IJTEEE
International Journal of Technology Enhancements and Emerging Engineering Research (ISSN 2347-4289)
PREVIOUS PUBLICATIONS



IJTEEE >> Volume 2 - Issue 8, August 2014 Edition



International Journal of Technology Enhancements and Emerging Engineering Research  
International Journal of Technology Enhancements and Emerging Engineering Research

Website: http://www.ijteee.org

ISSN 2347-4289



Approximate Fixed Point Theorem In Generalized Probabilistic 2-Normed Spaces

[Full Text]

 

AUTHOR(S)

G. P. S. Rathore, Bijendra Singh, Kirty Chauhan

 

KEYWORDS

Keywords: Approximate Fixed point, Probabilistic Spaces, Generalized Probabilistic 2-Normed Spaces, D-boundedness.

 

ABSTRACT

ABSTRACT: The conditions imposed in the fixed point theorem in Probabilistic Spaces are too strong. In this paper we steadied Probabilistic Analysis and recall Brouwer’s famous fixed point theorem to introduce the existence of approximate fixed point theorem in Generalized Probabilistic 2-Normed Spaces with weaker condition.

 

REFERENCES

[1] M. Rafi and M.S.M. Noorani, “Approximate Fixed Point theorem in Probabilistic Normed Spaces”, International J. Applied Mathematics & Statistics, Vol. 6, 48 – 55, 2006.

[2] K. Menger, “Statistical metrics”, IProc. Nat. Acad. Sci., USA, 28, 535 – 537, 1942.

[3] A. N. Serstnev, “On the motion of a random normed space”, Dokl. Akad. Nauk SSSR, 149(2), 280 - 283.

[4] I. Golet, “On Probabilistic 2-Normed Spaces”, Novi Sad J. Math.,35, 95-102, 2005.

[5] C. B. Alsina, C. Schweizer and A. Sklar, “On the definition of a Probabilistic Normed Space”, Aequationes Math., 46, 91-98, 1993.

[6] B. Schweizer and A. Sklar, “Probabilistic Metric Spaces”, Noth-Holan., 1983.

[7] M. Rafi, and M.S.M. Noorani, “Fixed Point theorem on Probabilistic Ultra – metric Spaces”, Journal of Approximation Theory and Application, Vol. 1, 23 – 28, 2005.

[8] B. Lafuerza Guillen, J. A. Rodrigues Lallena and C. Sempi, “A study of boundedness in probabilistic normed spaces”, J. Math. Anal. Appl., 232, 183-196, 1999.

[9] G. Constantin and I. Istratescu, “Elements of probabilistic analysis with application”, Kluwer Academic p ublisher, Romania, 1989.