A Miller Compensated Gain & Phase Enhanced TwoStage Differential Ota's Using Positive Feedback At Differential Stage
[Full Text]
AUTHOR(S)
Raghavendra Gupta, Sunny Jain
KEYWORDS
INDEX TERMS: CMOS technology, operational amplifier, operational transconductance amplifier(OTA), Gain Bandwidth Product (GBW), phase margin, positive feedback, gain enhancement
ABSTRACT
ABSTRACT: Miller compensated OTAs are generally used for frequency stabilization, as with increasing in gain of cascaded OTA the frequency response decreases in terms of gain bandwidth product and phase margin. A positive feedback, to increase the gain at differential stage of OTA is applied which increases gain without decreasing the gain bandwidth product and phase margin. The above prototype is implemented on 65 nm CMOS IBM technology in LT spice using spice model.
REFERENCES
[1]. Mohammed Abdulaziz, Markus Törmänen and HenrikSjöland, IEEE "A Compensation Technique for "TwoStage Differential OTAs" IEEE Transactions On Circuits And Systems, vol. 61, no. 8, august 2014.
[2]. M. Abdulaziz, A. Nejdel, M. Törmänen, and H. Sjöland, “A 3.4 mw65 nm CMOS 5th order programmable activeRC channel select filter forLTE receivers,” in Proc. IEEE RFIC, 2013, pp. 217–220.
[3]. P. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design ofAnalog Integrated Circuits. Hoboken, NJ, USA: Wiley, 2010.
[4]. M. Vadipour, “Capacitive feedback technique for wideband amplifiers,”IEEE J. SolidState Circuits, vol. 28, no. 1, pp. 90–92, Jan. 1993.
[5]. A. Vasilopoulos, G. Vitzilaios, G. Theodoratos, and Y. Papananos,“A lowpower wideband reconfigurable integrated activeRC filter with73 dB SFDR,” IEEE J. SolidState Circuits, vol. 41, no. 9, pp. 1997–2008,Sep. 2006.
[6]. G. Palmisano, G. Palumbo, and S. Pennisi, “Design procedure for twostagecmostransconductance operational amplifiers: A tutorial,” AnalogIntegr. Circuits Signal Process., vol. 27, no. 3, pp. 179–189, May 2001.
[7]. K. N. Leung, P. K. T. Mok, W.H. Ki, and J. K. O. Sin, “Threestagelarge capacitive load amplifier with dampingfactorcontrol frequencycompensation,” IEEE J. SolidState Circuits, vol. 35, no. 2, pp. 221–230,Feb. 2000.
[8]. H.T. Ng, R. M. Ziazadeh, and D. J. Allstot, “A multistage amplifiertechnique with embedded frequency compensation,” IEEE J. SolidStateCircuits, vol. 34, no. 3, pp. 339–347, Mar. 1999.
[9]. B. Thandri and J. SilvaMartinez, “A robust feedforward compensationscheme for multistage operational transconductance amplifiers with nomiller capacitors,” IEEE J. SolidState Circuits, vol. 38, no. 2, pp. 237–243, Feb. 2003.
[10]. X. Fan, C. Mishra, and E. SanchezSinencio, “Single miller capacitorfrequency compensation technique for lowpower multistage amplifiers,”IEEE J. SolidState Circuits, vol. 40, no. 3, pp. 584–592, Mar. 2005.
[11]. H. Lee, K. N. Leung, and P. K. T. Mok, “A dualpath bandwidth extensionamplifier topology with dualloop parallel compensation,” IEEE J. SolidState Circuits, vol. 38, no. 10, pp. 1739–1744, Oct. 2003.
[12]. A. Grasso, G. Palumbo, and S. Pennisi, “Threestage CMOS OTA forlarge capacitive loads with efficient frequency compensation scheme,”IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 10, pp. 1044–1048,Oct. 2006.
[13]. R. Assaad and J. SilvaMartinez, “The recycling folded cascode: A generalenhancement of the folded cascode amplifier,” IEEE J. SolidStateCircuits, vol. 44, no. 9, pp. 2535–2542, Sep. 2009.
[14]. N. Krishnapura, A. Agrawal, and S. Singh, “A highIIP3 thirdorder ellipticfilter with currentefficient feedforwardcompensated opamps,” IEEETrans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4, pp. 205–209, Apr. 2011.
[15]. M. Ahmadi, “A new modeling and optimization of gainboosted cascodeamplifier for highspeed and lowvoltage applications,” IEEE Trans.Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 169–173, Mar. 2006.
[16]. Phuoc T. Tran, Herbert L. Hess, Kenneth V. Noren Operational Amplifier Design with GainEnhancement Differential Amplifier 9781467324212/12/$31.00 ©2012 IEEE
