
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 9 36
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Improved Simulated Annealing With Cobweb
Spreading In Continuous Space

Mahdi Imani, Seyede Fatemeh Ghoreishi, Masoud Shariat-Panahi

Department of Electrical and Computer Engineering, University of Tehran. Teran, Iran.
Department of Mechanical Engineering, University of Tehran. Teran, Iran.
Associate Professor of Department of Mechanical Engineering, University of Tehran. Teran, Iran.
Email: f.ghoreishi@ut.ac.ir, Email: m.imani88@ut.ac.ir

ABSTRACT: An innovative approach based on Simulated Annealing method to optimize the problems in continuous space is introduced in this paper.
The Simulated Annealing is a popular method which finds the optimum value of functions based on temperature changes during its search. Specifying
the trend of temperature change and step length is the most critical issue in the original SA method. The SA algorithm with large or small initial step
length cannot reach the optimum value of the function efficiently. The initial temperature and its trend of decrease affect the results of the search in the
space. In addition, swarm algorithms like PSO and GA are the powerful methods in optimization. In this paper, a new method called Cobweb Simulated
Annealing (CSA) with swarm search in the continuous space is presented. The number of population, temperature and step length are adaptive during
the search in this algorithm. The searching points spread to explore the entire search space especially in the first stages. This method is applied to
several benchmark functions and the results have shown its reliability and efficiency to find the optimum value of functions in comparison with some
powerful modifications of SA. CSA is able to search more extensive area of the whole space with less computational cost. The other significant capability
of CSA algorithm is finding more local minimums than other modified algorithms.

Keywords : Simulated Annealing, continuous space, Cobweb Simulated Annealing (CSA), swarm search, adaptive step length and temperature

1 INTRODUCTION

Simulated Annealing (SA) which its name is borrowed from the
annealing process of metal is a powerful technique used in
optimization of functions versus former techniques in
optimization. The SA method has resolved the deficiencies
such as not converging to the optimum value in practical
number of steps in former methods. Also SA easily deals with
ridges and plateaus which were not included in latest methods
until SA has appeared due to the fact that it does not have
some constraints. The basics of SA methods are first
published by Kirkpatrick et al. [1] in 1983. It is based on
generalizing the Monte Carlo methods of testing the equation
of state and frozen states of a system with n dimensional
space. It explores the sample space by moving downhill and
uphill to find the optimum value of a test function. The
simulated annealing method is frequently used to solve the
problems like flow shop sequencing [2], quadratic assignment
[3], bandwidth minimization [4], continuous optimization [5],
image processing [6], communication systems [7-10],
travelling salesman [11,12] and so on. However the SA
method has some deficiencies in optimization procedure like:
It may be trapped in local minima and does not converge to
the best solution in some cases, and it may not find
considerable number of local minimums during the search due
to its blindness in entire space. In some papers, adaptive
parameters were proposed to obviate these deficiencies
[13,7]. Most of the modifications of SA algorithm focus on
discrete spaces. Latest modification on SA algorithm in a
continuous space to reach the best solution in minimum time
and cost is called nonu-SA which is released by Zhao Xinchao
in 2011 [8]. This algorithm with adaptive neighbourhood
borrows dynamic non-uniform mutation operation from
evolutionary algorithm (EA) [9]. Non- uniform mutation is one
of the operators responsible for both improving fine tuning
capabilities of the system and reducing the disadvantage of
random mutation. This dynamic operator has the features of
searching the space uniformly at early stages and locally at
final stages [8]. The optimization methods ha lots of
application such as [14]. In this paper, an innovative method

(CSA) based on the SA and swarm optimization is introduced.
CSA method has the ability to spread through the space
adaptively. Instead of choosing one single point in each stage,
CSA may choose up to n-point, which n is the dimension of the
search space. The other advantage of CSA is that it finds a
large percent of local minimum points of function during the
searching process. Since knowing the local minimums in
addition to the global minimum is practical in some
engineering problems, this algorithm with this ability is useful
in these problems. In the second section, the paper focuses on
the introduction of the proposed CSA method. The definition of
parameters and the equations used in CSA are discussed in
the third section. Then simulation results of applying CSA and
some other modifications of SA on different common
benchmark functions are presented and compared. Finally the
conclusion is included.

2 CSA ALGORITHM

First of all, SA algorithm and its basic characteristics are pre-
sented and then CSA is discussed.

SA algorithm
This algorithm searches the space of the function to find the
optimum value through a step by step searching. The initial

temperature 0T
 and step length are specified in the beginning

of the optimization process of function
()F x

. The algorithm
starts with the initial point and the next point in each stage is
calculated as follow:

' . (1)X X R

Where 'X and X are the new point and the current point in

the n-dimensional space respectively.

 is a uniformly distri-
buted random number in [-1, 1] and R is the step length. To

minimize
()F x

, if the value of the function in the new point

('X) is less than the current value of function, 'X will re-

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 9 37
ISSN 2347-4289

Copyright © 2014 IJTEEE.

place the X and the algorithm with this new point continues in
the same way. If the value of the function in the new point is

more than the current value, the 'X replaces the X if the

random number (rP
) generated in [0,1] is less than mp

 which
is the probability taken from Metropolis criteria and is defined
as:

 '

 (2)n

f x f x

T

mp e

Where nT
 is the temperature of the

thn step. If the random

number is more than mp
, the algorithm continues its search

with the previous point ()X . nT
 decreases during the search-

ing process to locate the final solution near the optimal value.
The decrease of temperature reduces the probability of mov-
ing toward the point with higher function value and also caus-

es the method to converge. The initial temperature 0T
 must

be large enough to ensure exploration of the space to find the
optimum value.

CSA algorithm
For papers accepted for publication, it is essential that the
electronic version of the manuscript and artwork match This
algorithm is based on SA with some modifications explained in

the following. In this algorithm, n initial points are chosen

stochastically. In each stage n random points are selected in
the neighborhood of each of the initial points in the space. Ini-
tial points are considered as the current points (ni) and nij is
the jth selected point around ith current point. Similar to basic
SA method, Xi is replaced with Xij* (the least value function) if
its value is less than the function value of Xi, if not, it is re-
placed with Xij* by the probability in Eq. 2. The best obtained
point (X*) is kept and updated during the search. In each
stage, in addition to Xij*, the function value of other points
({Xi1, Xi2, …, Xin}-{Xij*}) are compared with the function value
of X* and all the points with function values less than X*, are
added to the current points of the next step. So the current
points of the next stage are both the points obtained by the
comparison of the previous points with the generated points in
their neighborhood and the points with value functions less
than the best value saved in previous stages. In the beginning
of each stage, X* is compared with all of the current points and
in the case of presence of other point better than X*, it is up-
dated. One advantage of CSA is that it considers the dimen-
sion of space to choose the number of random points and also
it is capable to spread in the space like a cobweb. These
spreading points go forward until there is no point with value
function less than the current point in each branch. This algo-
rithm continues till the entire spreading branches stop. Then n
points with less function value among all the stopped points
are selected and the algorithm starts again. This algorithm
continues until the number of function evaluations reaches to

the number
()cN

 decided by the user. It is worthwhile to
mention that in some situations such as simple functions with
one minimum, the increasing number of spreading points
causes meaningless proliferation of function evaluations, so

maximum number of 2 n points in each stage is considered
which has been obtained with trial and error.

3. MOVING FROM SA TO CSA

The parameters and formulae used in the proposed algorithm

are discussed in this section. - The initial temperature 0T
 is

calculated by the following equation[8]:

0
0

0

 (3)
ln

S
T

Where 0 is the initial acceptance rate for the worse solution.

0S
 is the difference between the worse and the optimal solu-

tion. - Cooling method used in this paper is as follows:

0

1 (4)
1cn

c

T
T

Ln n

Where cn
 is the number of current function evaluations. The

probability of accepting a large function value decreases ex-
ponentially toward zero, so the final solution is near optimal
when the temperature approaches zero. - To obtain the next
points around the current points, one of the dimensions of the
current points is selected randomly. The selected dimension

'

kx
 is produced by the following equation and the new gener-

ated point is
'

, 1{ ,..., ,..., }i j k nX x x x
.

(1)

(1)

() 1 0.5

' (5)

() 1 0.5

bc

c

bc

c

n

N

k k k

k
n

N

k k k

x U x

x

x x L

Where is a random number in [0,1], and kU
, kL are the

upper and lower bounds of the variable kx
 respectively, cn

 is

the number of current function evaluations, cN
is the number

decided by the user, is a uniform random number in [0,1]
and b is a system parameter determining the degree of de-
pendency on iteration number (non-uniformity) [9]. This adap-
tive step length allows the algorithm to explore the whole
space in initial steps and in the later stages, the step length
decreases to prevent the point to distance from the optimum
value. The flowchart of the CSA algorithm is demonstrated in
Figure 1.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 9 38
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Generate n

random points

from Xi by Eq. 5

(Xij)

j=1,…,n

Generate n

random points as

current points

(Xi)

F(Xij) < F(Xi) Xi=Arg min F(Xij)
Stopping Criterion

Satisfied?

Rand <Pm (Eq.2)

F(Xij)<F(X*)

{Xi}={Xi}+{Xij}

F(X’)<F(X*)X’=arg min F(Xi) X*=X’

X*=arg min(F(Xi))

Yes

Yes

No

Yes

Yes

End

No

Yes

Start

Figure 1 Flowchart of CSA algorithm

4. COMPUTATIONAL RESULTS

The CAS method applied to several benchmark functions en-
sures the consistency of the method to find the optimum value
of functions. This method is also compared with GSA method
and nonu-SA method which are powerful modifications of SA.
Figure 2 shows a sample benchmark function which is tested
by CSA method. The function is as follows:

5

1 2 1

1

5

2

1

2 2

1 2

(,) .cos 1

.cos 1 (6)

1
[0.80032 1.42513]

2

i

i

f x x i i x i

i i x i

x x

 1 25 , 5x x

This benchmark function has two global minimum values
which are located nearby two local maximums. Figure 3 shows
the track of selected points in different branches of CSA me-
thod to reach the optimum value of this function from different
directions.

Figure 1. Benchmark Function (Eq. 6)

Figure 2. Searching process of CSA method for Benchmark

Function (Eq. 6) with Nc = 160

Table 1 shows the results of GSA, nonu-SA and CSA methods
applied to benchmark functions in Table 2 in Appendix. The
coefficients of f1, f2 and f3 are shown in Tables 3, 4 and 5 re-
spectively. The results are the statistic results over 30 inde-
pendent runs and they are obtained for the same number of
function Evaluations for all three methods. As it is shown in the
table, CSA is able to reach the lowest value function in the
same number of evaluations. Average of all 30 runs in each
algorithm shows that CSA can find the value nearby global
minimum more than other methods. For example in the
benchmark function Eq. 6 the results show that the CSA me-
thod reaches around the global minimum point in more than
86% of runs while the SA reaches this point just in 39% of
runs. As is clear from the results, the CSA method with the
abilities to spread in the space and also by considering the
dimension of space can explore a large portion of the function
space. So, in this method the dimension of problem is consi-
dered as an effective parameter. This allows the algorithm to
reach the optimum value in less number of evaluations. In ad-
dition, using adaptive step length during exploration and ex-
ploitation process increases the efficiency and accuracy of the
results. Another advantage of CSA algorithm is its ability to find
a large number of local minimums during the search and also
by keeping the best point in each stage, it adapts its spreading
to reach the global optimum.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 9 39
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Table 1. The results of applying GSA, nonu-SA and CSA to 10
benchmark functions over 30 independent runs

GSA nonu-SA CSA

No.
Func
tion
Eval
ua-
tions

F Best
Mea
n

Best Mean Best
Mea
n

1
-
3.21

-
3.02

-3.31 -3.24 -3.32 -3.29 2000

2
9.53
e-3

2.31
e-2

7.13e
-4

4.27e
-3

5.89e
-4

3.03
e-3

2000

3
0.99
8(22
)

10.3
4

0.998
(18)

0.998
(2)

0.998
(01)

0.99
8(12)

2000

4
64.3
4

78.2
3

3.24 9.83
9.72e
-2

7.94
e-1

4000

5
15.8
6

23.4
9

2.43e
-2

5.18e
-2

9.48e
-5

7.98
e-4

4000

6
1.78
e3

4.15
e3

17.54 51.60 0.224 4.73 4000

7 2.84 6.08
6.8e-
2

3.42e
-1

5.44e
-3

1.37
e-2

4000

8
2.19
e-2

2.94
8e-2

13.55 39.85 0.23 2.37 5000

9 0.36 0.63
1.84e
-6

1.14e
-2

4.15e
-4

9.55
e-3

5000

10
18.8
4

23.6
5

2.94e
-6

0.68
3.74e
-7

6.9e-
4

5000

11 1.32 2.24
0.78e

-9

3.98e
-3

3.4e-
10

5.36
e-5

5000

5. CONCLUSION

In this paper an innovative method based on SA algorithm and
swarm optimization is presented. The noticeable feature of this
algorithm is its ability to spread adaptively based on the di-
mension of the space to cover the entire space during the
search. Another advantage of this method is that it uses adap-
tive Step length which helps the algorithm to escape the local
minimums in the first steps of search process and also helps
the algorithm to converge to the final solution. Obtaining a
large number of local minimums in this method is another fea-
ture which is practical in lots of engineering problems. The
result of applying this method to some benchmark functions
shows great efficiency of CSA in comparison with other modifi-
cations.

REFERENCE

[1] Kirkpatrick, S., Vecchi, M.: Optimization by simmulated an-
nealing. science 220(4598), 671-680 (1983).

[2] Ishibuchi, H., Misaki, S., Tanaka, H.: Modified simulated

annealing algorithms for the flow shop sequencing problem.
European Journal of Operational Research 81(2), 388-398
(1995).

[3] Misevicius, A.: A modified simulated annealing algorithm for

the quadratic assignment problem. Informatica 14(4), 497-
514 (2003).

[4] Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An im-
proved simulated annealing algorithm for bandwidth mini-
mization. European Journal of Operational Research
185(3), 1319-1335 (2008).

[5] Locatelli, M.: Convergence of a simulated annealing algo-

rithm for continuous global optimization. Journal of Global
Optimization 18(3), 219-233 (2000).

[6] Carnevali, P., Coletti, L., Patarnello, S.: Image processing

by simulated annealing. IBM Journal of Research and De-
velopment 29(6), 569-579 (1985).

[7] Salcedo-Sanz, S., Santiago-Mozos, R., Bousoño-Calzón,

C.: A hybrid Hopfield network-simulated annealing approach
for frequency assignment in satellite communications sys-
tems. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on 34(2), 1108-1116 (2004).

[8] Xinchao, Z.: Simulated annealing algorithm with adaptive

neighborhood. Applied Soft Computing 11(2), 1827-1836
(2011).

[9] Zhao, X., Gao, X.S., Hu, Z.C.: Evolutionary programming

based on non-uniform mutation. Applied Mathematics and
Computation 192(1), 1-11 (2007).

[10] Paik, C., Soni, S.: A simulated annealing based solution

approach for the two-layered location registration and pag-
ing areas partitioning problem in cellular mobile networks.
European journal of operational research 178(2), 579-594
(2007).

[11] Černý, V.: Thermodynamical approach to the traveling sa-

lesman problem: An efficient simulation algorithm. Journal
of optimization theory and applications 45(1), 41-51 (1985).

[12] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for

the traveling-salesman problem. Operations research 21(2),
498-516 (1973).

[13] Low, C.: Simulated annealing heuristic for flow shop sche-

duling problems with unrelated parallel machines. Comput-
ers & Operations Research 32(8), 2013-2025 (2005).

[14] Tajeddini, M. A., Kebriaei. H, Imani, M.: Bidding Strategy in

pay as bid markets by Multi-Agent Reinforcement Learning.
The 28th International Power System Conference
(PSC2013)

http://scholar.google.com/citations?view_op=view_citation&continue=/scholar%3Fhl%3Den%26as_sdt%3D0,5%26scilib%3D1%26scioq%3D(ICEEE2013)&citilm=1&citation_for_view=IwSVQXEAAAAJ:u5HHmVD_uO8C&hl=en&oi=p
http://scholar.google.com/citations?view_op=view_citation&continue=/scholar%3Fhl%3Den%26as_sdt%3D0,5%26scilib%3D1%26scioq%3D(ICEEE2013)&citilm=1&citation_for_view=IwSVQXEAAAAJ:u5HHmVD_uO8C&hl=en&oi=p

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 9 40
ISSN 2347-4289

Copyright © 2014 IJTEEE.

APPENDIX
TABLE 2. MULTIMODAL AND UNIMODAL BENCHMARK FUNCTIONS WITH HIGH AND LOW DIMENSIONS

TABLE 3. COEFFICIENT OF R.HARTMAN’S FUNCTION (F1)

i aij , j=1,…,6 ci Pij , j=1,…,6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 3552 0.2883 0.3047 0.6650

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.381

TABLE 4. COEFFICIENT OF N. KOWALIK’S FUNCTION (F2)

I 1 2 3 4 5 6 7 8 9 10 11

Ai 0.1957
0.19
47

0.1735 0.16
0.084

4
0.062

7
0.045

6
0.034

2
0.0323 0.0233 0.0246

bi-1 0.025 0.5 1 2 4 6 8 10 12 14 16

TABLE 5. COEFFICIENT OF R.HARTMAN’S FUNCTION (F3)

i aij , j=1,…,25

1
-

32
-

16
0 16 32

-
32

-
16

..… 0 16 32

2
-

32
-

32
-

32
-

32
-

32
-

16
-

16
….. 32 32 32

Bench
mark
Func-
tion

m D Minimum Value of Func-
tion

1 6 [0,1]
m

-3.32

2 4 [-5,5]
m
 0.0003075

3 2 [-65.536,65.536]
m

0.998

4 30 [-100,100]
m

0

5 30 [-1.28,1.28]
m

0

6 30 [-30,30]
m

0

7 30 [-100,100]
m

0

8 30 [-5.12,5.12]
m

0

9 30 [-600,600]
m

0

10 30 [-32,32]
m

0

11 30 [-50,50]
m

0

