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ABSTRACT: An innovative approach based on Simulated Annealing method to optimize the problems in continuous space is introduced in this paper. 
The Simulated Annealing is a popular method which finds the optimum value of functions based on temperature changes during its search. Specifying 
the trend of temperature change and step length is the most critical issue in the original SA method. The SA algorithm with large or small initial step 
length cannot reach the optimum value of the function efficiently. The initial temperature and its trend of decrease affect the results of the search in the 
space. In addition, swarm algorithms like PSO and GA are the powerful methods in optimization. In this paper, a new method called Cobweb Simulated 
Annealing (CSA) with swarm search in the continuous space is presented. The number of population, temperature and step length are adaptive during 
the search in this algorithm. The searching points spread to explore the entire search space especially in the first stages. This method is applied to 
several benchmark functions and the results have shown its reliability and efficiency to find the optimum value of functions in comparison with some 
powerful modifications of SA. CSA is able to search more extensive area of the whole space with less computational cost. The other significant capability 
of CSA algorithm is finding more local minimums than other modified algorithms. 
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1 INTRODUCTION  

Simulated Annealing (SA) which its name is borrowed from the 
annealing process of metal is a powerful technique used in 
optimization of functions versus former techniques in 
optimization. The SA method has resolved the deficiencies 
such as not converging to the optimum value in practical 
number of steps in former methods. Also SA easily deals with 
ridges and plateaus which were not included in latest methods 
until SA has appeared due to the fact that it does not have 
some constraints. The basics of SA methods are first 
published by Kirkpatrick et al. [1] in 1983. It is based on 
generalizing the Monte Carlo methods of testing the equation 
of state and frozen states of a system with n dimensional 
space. It explores the sample space by moving downhill and 
uphill to find the optimum value of a test function. The 
simulated annealing method is frequently used to solve the 
problems like flow shop sequencing [2], quadratic assignment 
[3], bandwidth minimization [4], continuous optimization [5], 
image processing [6], communication systems [7-10], 
travelling salesman [11,12] and so on. However the SA 
method has some deficiencies in optimization procedure like: 
It may be trapped in local minima and does not converge to 
the best solution in some cases, and it may not find 
considerable number of local minimums during the search due 
to its blindness in entire space. In some papers, adaptive 
parameters were proposed to obviate these deficiencies 
[13,7]. Most of the modifications of SA algorithm focus on 
discrete spaces. Latest modification on SA algorithm in a 
continuous space to reach the best solution in minimum time 
and cost is called nonu-SA which is released by Zhao Xinchao 
in 2011 [8]. This algorithm with adaptive neighbourhood 
borrows dynamic non-uniform mutation operation from 
evolutionary algorithm (EA) [9]. Non- uniform mutation is one 
of the operators responsible for both improving fine tuning 
capabilities of the system and reducing the disadvantage of 
random mutation. This dynamic operator has the features of 
searching the space uniformly at early stages and locally at 
final stages [8]. The optimization methods ha lots of 
application such as [14]. In this paper, an innovative method 

(CSA) based on the SA and swarm optimization is introduced. 
CSA method has the ability to spread through the space 
adaptively. Instead of choosing one single point in each stage, 
CSA may choose up to n-point, which n is the dimension of the 
search space. The other advantage of CSA is that it finds a 
large percent of local minimum points of function during the 
searching process. Since knowing the local minimums in 
addition to the global minimum is practical in some 
engineering problems, this algorithm with this ability is useful 
in these problems. In the second section, the paper focuses on 
the introduction of the proposed CSA method. The definition of 
parameters and the equations used in CSA are discussed in 
the third section. Then simulation results of applying CSA and 
some other modifications of SA on different common 
benchmark functions are presented and compared. Finally the 
conclusion is included.  

 

2 CSA ALGORITHM 

First of all, SA algorithm and its basic characteristics are pre-
sented and then CSA is discussed.  
 

SA algorithm 
This algorithm searches the space of the function to find the 
optimum value through a step by step searching. The initial 

temperature 0T
 and step length are specified in the beginning 

of the optimization process of function
( )F x

. The algorithm 
starts with the initial point and the next point in each stage is 
calculated as follow: 
 

'  .                                           (1)X X R 
                             

 

Where 'X  and X are the new point and the current point in 

the n-dimensional space respectively. 


 is a uniformly distri-
buted random number in [-1, 1] and R is the step length. To 

minimize
( )F x

, if the value of the function in the new point 

( 'X ) is less than the current value of function, 'X  will re-
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place the X and the algorithm with this new point continues in 
the same way. If the value of the function in the new point is 

more than the current value, the 'X  replaces the X  if the 

random number ( rP
) generated in [0,1] is less than mp

 which 
is the probability taken from Metropolis criteria and is defined 
as: 

 

   '

                                     (2)n

f x f x

T

mp e




 

 

Where nT
 is the temperature of the 

thn  step. If the random 

number is more than mp
, the algorithm continues its search 

with the previous point ( )X . nT
 decreases during the search-

ing process to locate the final solution near the optimal value. 
The decrease of temperature reduces the probability of mov-
ing toward the point with higher function value and also caus-

es the method to converge.  The initial temperature 0T
 must 

be large enough to ensure exploration of the space to find the 
optimum value.  
 

CSA algorithm 
For papers accepted for publication, it is essential that the 
electronic version of the manuscript and artwork match This 
algorithm is based on SA with some modifications explained in 

the following.  In this algorithm, n  initial points are chosen 

stochastically. In each stage n  random points are selected in 
the neighborhood of each of the initial points in the space. Ini-
tial points are considered as the current points (ni) and nij is 
the jth selected point around ith current point. Similar to basic 
SA method, Xi is replaced with Xij* (the least value function) if 
its value is less than the function value of Xi, if not, it is re-
placed with Xij* by the probability in Eq. 2. The best obtained 
point (X*) is kept and updated during the search. In each 
stage, in addition to Xij*, the function value of other points 
({Xi1, Xi2, …, Xin}-{Xij*}) are compared with the function value 
of X* and all the points with function values less than X*, are 
added to the current points of the next step. So the current 
points of the next stage are both the points obtained by the 
comparison of the previous points with the generated points in 
their neighborhood and the points with value functions less 
than the best value saved in previous stages. In the beginning 
of each stage, X* is compared with all of the current points and 
in the case of presence of other point better than X*, it is up-
dated. One advantage of CSA is that it considers the dimen-
sion of space to choose the number of random points and also 
it is capable to spread in the space like a cobweb. These 
spreading points go forward until there is no point with value 
function less than the current point in each branch. This algo-
rithm continues till the entire spreading branches stop. Then n 
points with less function value among all the stopped points 
are selected and the algorithm starts again. This algorithm 
continues until the number of function evaluations reaches to 

the number 
( )cN

 decided by the user. It is worthwhile to 
mention that in some situations such as simple functions with 
one minimum, the increasing number of spreading points 
causes meaningless proliferation of function evaluations, so 

maximum number of 2 n  points in each stage is considered 
which has been obtained with trial and error. 

3. MOVING FROM SA TO CSA 

The parameters and formulae used in the proposed algorithm 

are discussed in this section. - The initial temperature  0T
 is 

calculated by the following equation[8]: 
 

  
 

0
0

0

                                         (3)
ln

S
T




 

 

Where 0   is the initial acceptance rate for the worse solution. 

0S
 is the difference between the worse and the optimal solu-

tion. - Cooling method used in this paper is as follows: 
 

 
0

1                                (4)
1cn

c

T
T

Ln n
 


 

Where cn
 is the number of current function evaluations. The 

probability of accepting a large function value decreases ex-
ponentially toward zero, so the final solution is near optimal 
when the temperature approaches zero. - To obtain the next 
points around the current points, one of the dimensions of the 
current points is selected randomly. The selected dimension 

'

kx
 is produced by the following equation and the new gener-

ated point is 
'

, 1{ ,..., ,..., }i j k nX x x x
. 
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Where   is a random number in [0,1], and  kU
, kL  are the 

upper and lower bounds of the variable kx
 respectively, cn

 is 

the number of current function evaluations, cN
is the number 

decided by the user,   is a uniform random number in [0,1] 
and b is a system parameter determining the degree of de-
pendency on iteration number (non-uniformity) [9]. This adap-
tive step length allows the algorithm to explore the whole 
space in initial steps and in the later stages, the step length 
decreases to prevent the point to distance from the optimum 
value. The flowchart of the CSA algorithm is demonstrated in 
Figure 1. 
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Generate n 

random points 

from Xi by Eq. 5  
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Figure 1 Flowchart of CSA algorithm 
 

4. COMPUTATIONAL RESULTS 

The CAS method applied to several benchmark functions en-
sures the consistency of the method to find the optimum value 
of functions. This method is also compared with GSA method 
and nonu-SA method which are powerful modifications of SA. 
Figure 2 shows a sample benchmark function which is tested 
by CSA method. The function is as follows: 
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This benchmark function has two global minimum values 
which are located nearby two local maximums. Figure 3 shows 
the track of selected points in different branches of CSA me-
thod to reach the optimum value of this function from different 
directions. 

 
Figure 1. Benchmark Function (Eq. 6) 

 
Figure 2. Searching process of CSA method for Benchmark 

Function (Eq. 6) with Nc = 160 
 
Table 1 shows the results of GSA, nonu-SA and CSA methods 
applied to benchmark functions in Table 2 in Appendix. The 
coefficients of f1, f2 and f3 are shown in Tables 3, 4 and 5 re-
spectively. The results are the statistic results over 30 inde-
pendent runs and they are obtained for the same number of 
function Evaluations for all three methods. As it is shown in the 
table, CSA is able to reach the lowest value function in the 
same number of evaluations. Average of all 30 runs in each 
algorithm shows that CSA can find the value nearby global 
minimum more than other methods. For example in the 
benchmark function Eq. 6 the results show that the CSA me-
thod reaches around the global minimum point in more than 
86% of runs while the SA reaches this point just in 39% of 
runs. As is clear from the results, the CSA method with the 
abilities to spread in the space and also by considering the 
dimension of space can explore a large portion of the function 
space. So, in this method the dimension of problem is consi-
dered as an effective parameter. This allows the algorithm to 
reach the optimum value in less number of evaluations. In ad-
dition, using adaptive step length during exploration and ex-
ploitation process increases the efficiency and accuracy of the 
results. Another advantage of CSA algorithm is its ability to find 
a large number of local minimums during the search and also 
by keeping the best point in each stage, it adapts its spreading 
to reach the global optimum. 
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Table 1. The results of applying GSA, nonu-SA and CSA to 10 
benchmark functions over 30 independent runs 

 

GSA nonu-SA CSA 

No. 
Func
tion 
Eval
ua-
tions 

F Best 
Mea
n 

Best Mean Best 
Mea
n 

 

1 
-
3.21 

-
3.02 

-3.31 -3.24 -3.32 -3.29 2000 

2 
9.53
e-3 

2.31
e-2 

7.13e
-4 

4.27e
-3 

5.89e
-4 

3.03
e-3 

2000 

3 
0.99
8(22
) 

10.3
4 

0.998
(18) 

0.998
(2) 

0.998
(01) 

0.99
8(12) 

2000 

4 
64.3
4 

78.2
3 

3.24 9.83 
9.72e
-2 

7.94
e-1 

4000 

5 
15.8
6 

23.4
9 

2.43e
-2 

5.18e
-2 

9.48e
-5 

7.98
e-4 

4000 

6 
1.78
e3 

4.15
e3 

17.54 51.60 0.224 4.73 4000 

7 2.84 6.08 
6.8e-
2 

3.42e
-1 

5.44e
-3 

1.37
e-2 

4000 

8 
2.19
e-2 

2.94
8e-2 

13.55 39.85 0.23 2.37 5000 

9 0.36 0.63 
1.84e
-6 

1.14e
-2 

4.15e
-4 

9.55
e-3 

5000 

10 
18.8
4 

23.6
5 

2.94e
-6 

0.68 
3.74e
-7 

6.9e-
4 

5000 

11 1.32 2.24 
0.78e

-9 

3.98e
-3 

3.4e-
10 

5.36
e-5 

5000 

 

5. CONCLUSION 

In this paper an innovative method based on SA algorithm and 
swarm optimization is presented. The noticeable feature of this 
algorithm is its ability to spread adaptively based on the di-
mension of the space to cover the entire space during the 
search. Another advantage of this method is that it uses adap-
tive Step length which helps the algorithm to escape the local 
minimums in the first steps of search process and also helps 
the algorithm to converge to the final solution. Obtaining a 
large number of local minimums in this method is another fea-
ture which is practical in lots of engineering problems. The 
result of applying this method to some benchmark functions 
shows great efficiency of CSA in comparison with other modifi-
cations. 
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APPENDIX 
TABLE 2.  MULTIMODAL AND UNIMODAL BENCHMARK FUNCTIONS WITH HIGH AND LOW DIMENSIONS 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 3.  COEFFICIENT OF R.HARTMAN’S FUNCTION (F1) 

 

i aij , j=1,…,6 ci Pij , j=1,…,6 

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 3552 0.2883 0.3047 0.6650 

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.381 

 
TABLE 4. COEFFICIENT OF N. KOWALIK’S FUNCTION (F2) 

 

I 1 2 3 4 5 6 7 8 9 10 11 

Ai 0.1957 
0.19
47 

0.1735 0.16 
0.084

4 
0.062

7 
0.045

6 
0.034

2 
0.0323 0.0233 0.0246 

bi-1 0.025 0.5 1 2 4 6 8 10 12 14 16 

 
TABLE 5. COEFFICIENT OF R.HARTMAN’S FUNCTION (F3) 

 

i aij , j=1,…,25 

1 
-

32 
-

16 
0 16 32 

-
32 

-
16 

..… 0 16 32 

2 
-

32 
-

32 
-

32 
-

32 
-

32 
-

16 
-

16 
….. 32 32 32 

 

Bench
mark 
Func-
tion 

m D Minimum Value of Func-
tion 

1 6 [0,1]
m 

-3.32 

2 4 [-5,5]
m
 0.0003075 

3 2 [-65.536,65.536]
m 

0.998 

4 30 [-100,100]
m 

0 

5 30 [-1.28,1.28]
m 

0 

6 30 [-30,30]
m 

0 

7 30 [-100,100]
m 

0 

8 30 [-5.12,5.12]
m 

0 

9 30 [-600,600]
m 

0 

10 30 [-32,32]
m 

0 

11 30 [-50,50]
m 

0 


