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ABSTRACT: Blind Signature is an addendum of Digital Signature. It is a two party protocol in which a requester sends a message to a signer to get the 
signature without revealing the contents of the message to the signer. The signer puts the signature using his/her private keys and the generated 
signature can be verified by anyone using signer‟s public keys. Blind signature has a major property called as untraceability or unlinkability i.e after the 
generation of the signature the signer cannot link the message-signature pair. This is known as blindness property. We have proposed blind signature 
scheme and its variation based on Elliptic Curve Cryptography (ECC) in which major emphasis is given on the untraceability property. We have 
cryptanalyzed  Carmenisch et al.‟s blind signature scheme and Lee et al.‟s blind signature scheme and proposed an improvement over it. It is found that, 
the proposed scheme has less computational complexity and they can withstand active attacks.  
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1 INTRODUCTION 

Now a day‟s transaction over the internet has been 
increased vastly. When data are transmitted through the 
Internet, it is better that the data are protected by a 
cryptosystem to prevent them from tampering by an illegal 
third party. Basically, an encrypted document is sent, and it 
is impossible for an unlawful party to get the contents of the 
message, except he gets the sender‟s private key to 
decrypt the message. Under a mutual agreement between 
the senders and receivers, each sender holds a private key 
to encrypt his messages to send out, and a public key used 
by the receiver to decrypt his sent-out messages. When the 
two message digests are verified to be identical, the 
recipient can have the true text message. Thus, the security 
of data transmission can be made sure. User need to be 
authenticated for many of the application they use. This 
service can be achieved by the cryptography protocol called 
Digital Signature. A digital signature scheme provides a way 
for signer to sign messages using his private key so that the 
signatures can later be verified by anyone else by using 
public key of signer.  Blind signature scheme is a special 
form of digital signature, which was first introduced by 
David Chaum 1982. In a blind signature scheme, a signer 
signs a message without knowing the contents of the 
message. The message is blinded by a requester. After 
receiving the signed message from the signer, the 
requester can derives the valid signature for the message 
from the signer. Anyone can verify the blind signature using 
the public key of the signer. If the message and its 
signature are published, the signer can verify the signature, 
but he/she cannot link the message-signature pair. This 
scheme provides Authentication and non-repudiation to the 
original sign request sent from a requester so as to prevent 
fraudulent action by the signer. Blind signatures are widely 
used in many important cryptographic services, especially 
in those services that emphasize the privacy of users such 
as electronic voting over Internet and untraceable payment 
services.  Basically a bind signature scheme is a protocol 
for a group of requesters and a signer.  Each requester 
sends an encrypted message to the signer and obtains a 
valid signature from him. Note that the signer only signs the 
message and does not decrypt it. Later, the signer can 
verify the genuineness of the signature whenever   he   

receives   the   message-signature   pair; however, he 
cannot link the message-signature pair to the particular 
phase of the signing protocol that has led to this pair.  
 

1.2 Digital Signature: 
The digital signatures are used in private communication, 
where customer privacy is main object. All messages are 
capable of being encrypted and decrypted so as to ensure 
the integrity and non-repudiation of them. The concept of 
digital signatures originally comes from cryptography, and is 
defined to be a method that a sender‟s text messages are 
encrypted or decrypted through a hash function number in 
keeping the messages secured when transmitted. Especial-
ly, when a one-way hashing function is performed to a mes-
sage, its related digital signature is generated which is 
called a message digest. A one way hash function is a ma-
thematical algorithm that makes a message of any length 
as input, but of a fixed length as output. Because its one-
way property, it is impossible for the third party to decrypt 
the encrypted messages. Two phases of the digital signa-
ture process is described in the following. 
 
1.2.1 Signing Phase: A  sender   firstly  makes  his mes-
sage  or  data  as  the  input  of  a  one-way  hashing func-
tion and then produces  its corresponding message digest 
as the output. Secondly, the message digest will be en-
crypted by the private key of the sender. Thus, the digital 
signature of the message is done.  Finally, the sender 
sends his message or data along with its related digital sig-
nature to a receiver. 
 
1.2.2. Verification Phase:  Once the receiver has the mes-
sage as well as the digital signature, he repeats the same 
process of the sender does, letting the message as an input 
into the one-way hashing function to get the first message 
digest as output. Then he decrypts the digital signature by 
the sender‟s public key so as to get the second message 
digest. Finally, verify whether these two message digests 
are identical or not. 
 

1.3 Properties of Blind Signature: 
The signer signs the requester‟s message and knows noth-
ing about it; moreover, no one knows about the correspon-
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dence of the message-signature pair except the requester.  
Blind signature scheme should satisfy following properties. 

 Correctness: The correctness of the signature of a 
message signed through the signature scheme can be 
checked by anyone using the signer‟s public key. 

 Unforgeability: only the signer can give a valid 

signature for the associated message. 

 Blindness: The content of the message should be 
blind to the signer; the signer of the blind signature 
does not see the content of the message. 

 Untraceability: The signer of the blind signature is 
unable to link the message-signature pair even when 
the signature has been revealed to the public. 

 
1.3.1 Phases of blind signature scheme  

 Blinding phase: A sender firstly chooses a random 
number called a blind factor to mess his message   
such that the signer will be blind to the message.  

 Signing phase: When the signer gets the blinded 
message, he directly encrypts the blinded message by 
his private key and then sends the blind signature back 
to the sender. 

 Unblinding phase: The sender uses his blind factor to 
recover the signer‟s digital signature from the blinded 
signature. 

 Signature verification phase: Any one uses the 
signer‟s public key to verify whether the signature is 
genuine. 
 

 
 
 
 
      
 
 
 
 

Figure 1.1: Operation of a Blind Signature Scheme 
 
1.3.2 Applications of Blind Signature  
 
E-cash: 
E-cash was introduced by David Chaum as an anonymous 
cash system [10].It is interesting to know that e-coins are 
blind signatures. e-cash is a three party protocol, in which a 
customer or the requester requests for money withdrawal to 
his/her bank or the signer for buying products from the mer-
chant [11, 12].The signer verifies the authenticity of the re-
quester and then sends signed tokens to the requester. The 
requester sends the tokens to the merchant and the mer-
chant give the token to the bank for verification of the to-
kens. So we can see one transaction can give one valid 
token packet or one valid sig-nature. For multiple transac-
tions the corresponding signatures or the e-coins will be 
different. But, nowadays many requesters become mali-
cious and spend the e-coins for multiple times. This is 
known as the double spending problem. Though blind sig-
nature provides untraceability or unlinkability but sometimes 
it is necessary to reveal the identity of the requester. To do 
so one requester should not blind all the internal structure 
of the message. It should blind the outer part of the mes-

sage so that by using the public parameters the signer can 
able to trace the identity of the malicious requester. This is 
kind of blind signature is known as restrictive blind signa-
ture. 
 
E-voting: 
In e-voting system [1, 8, 13–15], a voter first registers him-
self/herself in a voting system and then sends the blinded 
vote to the voting system. The voting system then sends 
the vote to the ballot system. There it is verified whether the 
voter is a registered or valid voter or not. If yes then the 
ballot center gives its signature on the vote envelope and 
sends it to the counting system. So the ballot system here 
gives his signature on the vote envelope without knowing 
the contents of the envelope. This shows the blindness 
property. And when the vote is being disclosed the ballot 
system will unable to link the signature and the vote to a 
particular instance. This shows the untraceability or unlin-
kability property of the blind signature. 
 
1.3.2 Variations of Blind Signature  
 
Restrictive Blind Signature: 
Restrictive blind signature means that a requester can blind 
the documents but with some restrictions. It is a protocol 
which says that any user can request for a blind signature 
on a document form a valid signer. But it has certain limita-
tions as compared to the normal blind signature. Like nor-
mal blind signature the user can blind the message in any 
way but the choice of the message is restricted and must 
follow certain rules so that the original message and the 
blinded message are isomorphic. [4,5,16,17] The blind sig-
nature ensures that the signature generated by the signer 
for one transaction can only be used once. But if the re-
quester becomes malicious and tries to replay the signature 
again after some time duration then the identity of the re-
quester should be revealed. This can be done by applying 
restrictive blindness to the normal blind signature scheme. 
Revocable Anonymity: In any communication, protecting the 
contents is not enough. Sometimes it is required to keep 
the identity of the recipient as private. In the context of elec-
tronic commerce, If no anonymity is provided then the users 
preferences can be known. With this information anyone 
can know the profile of users and send them targeted ad-
vertisements or can sell the profiles to other commercial 
units. The buyer will get problem by this as they want to do 
the transactions anonymously. Blind signature allows a user 
to do any transactions anonymously. But in case of any 
legal disputes e.g money laundering, the identity of the ma-
licious user needs to be revealed. This is known as revoca-
ble anonymity i.e to revoke the anonymity when needed 
[18,19,21,22]. 
 
Fair Blind Siganture: 
Though it is another variation of blind signature, it can be 
obtained from the restrictive blind signature also.In a fair 
blind signature protocol a single trustee or multiple trustees 
may get involved in the system.It is also used to revoke the 
anonymity of malicious users and the trustte used to do 
that. To do so,the trustee view all the parts of the blinding 
process [13,23]. For this reason the trustee need to be re-
main online all the time, which compromises the efficiency 
of the system. Later many fair blind signatures [14, 15] are 
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developed in which the trustee need to keep a public-
private key pair. The trustee can only involved in the tracing 
protocol and by using the key pairs he can trace the identity 
of the malicious user. 
 
Partial Blind Signature: 
To achieve revocable anonymity, another variation of blind 
signature called as par-tial blind signature is also used 
[5,17].To trace the identity of the malicious user, the signer 
need to keep some data in the database during the transac-
tion. This will increase the space of the database. When the 
requester tries to use the signature twice, the signer checks 
the database to identify that requester. But to search the 
database each time is not so feasible. Partial blind signa-
ture overcomes this problem. In a partial blind signature 
protocol, the signer and the requester have some common 
agreed information. The requester can blind the message 
but the common agreed information need to be remaining 
unblind. By using the common information the signer can 
trace the identity of the requester when needed. The con-
cept of partial blind signature was developed by Abe and 
Okamato [17]. 
 
1.4 Motivation  
The motivation for this project came from the growing need 
for a full proof signature verification scheme which can as-
sure untraceability property, conditional anonymity, and 
maximum possible security from the existing schemes. The 
idea be-hind the project is also to confirm that the proposed 
scheme can provide comparable results and if possible bet-
ter performance than already proposed signature verifica-
tion schemes. 
 

1.5 Related Work 
 
1.5.1. “Blind Signature Scheme Based on Elliptic Curve 
Cryptography” [2] 
This article, propose a new blind signature which is based 
on ECC and consists of following parameters.  
Xs: private key of the signer 
Qs: public key of the signer 
k: randomly chosen number by the signer 
u, v: randomly chosen number by the requester 
m: message which the requester wants to blind 
H( . ): a collision-free hash function 
P: a generator point in ECC 
 
Working procedure: 
Here given an e-Payment application to indicate the effec-
tive of the proposed scheme. If a user (U) wants to with-
draw a coin (E-cash) from the bank (B). The procedures of 
u proposed scheme works as follows:  
1.  U sends a request to B for withdrawing of E-coin, m.  
2. B chooses a random number k, computes R‟ (=kP), and 
sends R' to U. After receiving R', U computes R (=uR‟+vP) 
and e (=H (R||m)), using secret random value u and v. 
Then, U calculates the blinded value e‟ (e‟=e/u) and sends it 
to B.  
3.  B uses his/her private key to generate a blind signature 
S' (=Xbe‟+k) for e' and sends it to U. Here Xb is B‟s private 
key.  
4.  U un-blinds B‟s signature S' by using u and v (i.e., S= 
S'u+ v), and verifies S by checking the equations: SP= eQb 

+ R, where Qb is a public-key of the bank. If the equation 
holds, U obtains a valid E-cash.  
U stores the E-cash S to a diskette or smart card. When the 
user U wants to purchase merchandise over Internet, 
he/she sends the E-cash to the merchant. The merchant 
verifies the E-cash whether legal one or not by checking the 
equations: SP= eQb + R. If the equation holds, the mer-
chant obtains a valid E-cash.  Security Analysis  This sec-
tion shows that this scheme preserves all the characteristic 
of a blind signature.  
 
Blindness:  
The signer signs a message without knowing its contents. 
Blindness is the first important property in a blind signature. 
In this scheme, the requester calculates R = uR' + vP, and 
generates e' which is a concatenation of R and m with a 
hash function H ( . ). Then, he/she sends them to the sign-
er. Hence, the signer cannot know the message m.  
 
Unforgeability:  
No one can forge (m, R, S) because the elliptic curve dis-
crete logarithm problem is difficult to solve. Assume three 
situations as follows.  Situation 1: If someone tried to fake 
R1, m1, he/she cannot obtain S1. Because S1P= e1Qs+ 
R1 and S1 is unknown. It is an elliptic curve discrete loga-
rithm problem and difficult to solve. Situation 2: If someone 
gets S1, m1, he/she cannot obtain R1. Because S1P = 
e1Qs + R1, R1 is unknown, and e1 = H(R1||m1). It is also 
an elliptic curve discrete logarithm problem and difficult to 
solve.  Situation 3: If someone tries to fake R1 and S1, 
he/she cannot obtain m1. Because S1P = e1Qs + R1, 
he/she cannot get e1 without m1. It is an elliptic curve dis-
crete logarithm problem and is difficult to solve.  
 
Untraceability  
If anyone obtains the valid signature, he/she cannot link this 
signature to the message. In this scheme, if the signer keep 
a record set ( ki, R'i, e'i, S'i ), where i= 1, 2, …, n, he/she 
cannot trace the blind signature. Expand this as follows.  
When the requester reveals n records (mi, Ri, Si) to the 
public, the signer will compute the values ei and u', and 
obtain Si and Ri, where ei = H( Ri || mi ), and u'=et / et‟ 
However, the signer cannot trace the blind signature by 
detecting whether each Ri and Ri+1 have the same rela-
tion. Therefore, the signer cannot trace the blind signature.  
Merit: It satisfies Blindness, Unforgeability, Untraceability-
Demerit: Unable to find correctness. 
 
1.5.2 “A Novel Untraceable Blind Signature Based on 
Elliptic Curve” [3]. 
 
The initialization phase: 
Let (q,FR,a,b,G,n,h) are the curve parameter, dB ( a ran-
domly selected in the interval [1,n-1] ) and Q are private 
and public key of signer, respectively. Where Q = dB G 
which is made public. The signer randomly chooses k1, k2, 
l1 and l2 and calculates r1 and r2 as follows: 
R 1 = k 1 G  
R 2 = k2 G   
R 1 = (xr1, y r1 )   
R 2 = (x r2 , y r 2 ) 
r 1 = Xr1  mod  n  and r1 != 0 
r 2 = Xr2  mod  n  and r2 != 0 
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The signer sends (R1, R2, l1, l2) to requester. 
 
The requesting phase: 
After receiving, the (R1,R2,l1,l2 ) requester randomly select 
four integers a,b,w and z such that w is relatively prime to z  
i.e. gcd( w,z)=1. According to Extended Euclid‟s algorithm 
there exist two integer e and d such that dz+ ew =1. Signer 
secret values are (b, a, z, d, w, e) .The requester computes 
R1 and R2 as, 
R1 = R1w a l1,   R1= (xr1,yr1) 
R2 = R2 z b l2 ,  R2 = (xr2,yr2) 
r1 = xr1 mod n           r2 = xr2 mod n 
After calculating r1 and r2 the requester blinds the message 
m as follows 
m 1= e m r1 r1-1 r2-1 a-1  mod n ,        m2 = e m r2 r1-1 r2-
1 b-1  mod n   
The requester sends the blind messages m1 and m2 to 
signer for signature 
 
The Signing Phase: 
In this phase, the signer computes blind signature S1 and 
S2 by using received blinds messages m1 and m2 as fol-
lows 
S1=dB m1 - r1k1l1 mod n 
S2=dB m2 - r2k2l2 mod n  
Then the signer sends the blind signatures s1 and s2 to the 
requesters. 
 
The extraction phase: 
After receiving the blind signatures S1and S2 the requester 
extracts the actual signature as follows, 
S1=S1 r1-1 r1 r2 w a mod n 
S2=S2  r2-1 r1 r2 w a mod n 
S= S1+S2 
R=R1+R2 
r = (r1*r2) mod n 
The pair (r, s) are the valid digital signature of message m. 
 
The Verifying phase: 
Anyone can verify the legitimacy of the digital signature (R, 
r, s) of message m by using  
mQ = sG + rR 
Merits: secure, robust and untraceable. 
Demerits: Can be implemented for off-line applications 
 
1.5.3. “An ECC-Based Blind Signature Scheme” by Fuh-
Gwo Jeng, Tzer-Long Chen, Tzer-Shyong Chen [4]   
In this scheme, an elliptic group Ep(a, b) is formed as y2 = 
x3+ax+b (mod p), where 4a3+27b2 ≠ 0 mod p such that the 
elliptic group Ep(a, b) is proper for cryptography. And  then  
a  base  point  G =  (x,  y)  on  Ep(a,  b)  is determined 
whose order is a very large value n such that n× G = O. 
Two parties, namely a group of requesters, {Ri | 1≤ i ≤ n, n € 
N}, and a signer, are the participants in this blind signature 
scheme. For requester Ri, he randomly selects  a  secret  
key  ni  € Zp,  and  generates  his corresponding public key 
Pi ≡ ni×G (mod p). its working procedure is described in the 
following .Requester Ri holds message m, forms α ≡ m × 
(ni × Pi) (mod p), and sends α to the signer. Signer signs α 
by randomly selecting a number nv, and checks whether (α, 
nv) in his database. If yes, signer  selects  a  distinct  num-
ber  nv  for  the in-coming  identical  blinded  message.  
Then he computes r ≡ nv × α (mod p) and s ≡ (nv + ns) × α 

(mod p) and returns the message-signature pair (α, (r, s)) to 
Requester Ri. In case, he keeps (α, nv) in his database.  
Requester Ri strips s in (r, s) by applying his own secret key 
ni and the public key Ps  of the signer to yield s′≡ s − m× ni   
× Ps   (mod p).  And then requester Ri computes m′ = ni (ni 
−1) ⋅ m. Anyone can use the signer‟s public key Ps  to veri-
fy the authentication of the signature (m′, s′, r) by checking 
whether the formula r ≡ s′− m′× Ps (mod p) holds. 
 
1.5.4 THEOREM: 
The triple (m′, s′, r) is a valid signature of message m for the 
above protocol and the protocol is a blind signature 
scheme. 
 
PROOF: 

Prove that the triple (m′, s′, r) is a valid signature of mes-
sage m for the above protocol. The validity of the signature 
(m′, s′, r) can be easily be shown as follows, since s′ ≡ s − 
m× ni × Ps  (mod p), and m′ = ni (ni −1) m. it has s′− m′× Ps 
= s − m × ni × Ps − m′× Ps = s − m× ni × Ps − ni (ni 
−1)⋅ m× Ps = s − m× ni × Ps − ni ×ni ×m× Ps+ ni ×m× Ps = 
s − ni ×ni ×m× Ps = (nv + ns)× α− ni ×ni ×m× Ps  = (nv + 
ns)× m× (ni × Pi)− ni ×ni ×m× Ps =nv × m × ni × Pi + ns × m 
×ni × Pi − ni  × ni × m × Ps  = nv × m × ni × Pi + ns × m × ni  
× ni × G − ni × ni × m × ns× G = nv × m × ni × Pi = nv × α ≡ 
r (mod p) Two distinct message-signature pairs (m, (r1, s1)) 
and (m, (r2, s2)) yielded by giving two identical messages 
because the identical messages have a unique blinding 
factor nv each.  In order to prove the blindness of the proto-
col, for given two identical message-signatures, the blinding 
factors applied on each are identical. Let n1 and n2 be the 
blinding factors respectively for two identical messages, 
and (r1, s1) and (r2, s2) be the corresponding signatures 
yielded from the above protocol. Suppose (r1,s1) and 
(r2,s2) are identical, it is obtained r1 ≡ r2 (mod p);       s1 ≡ 
s2 (mod p). Thus, n1× α ≡ n2× α (mod p), and n1× α+ ns× α 
≡ n2× α+ ns× α (mod p). Both of the equations show that n1 
is equal to n2. Therefore, n1 and n2 being two distinct blind-
ing factors implies that the corresponding signatures are 
distinct. Thus the blindness of our protocol holds.  As to the 
blindness defined by Chaum, the signer knows nothing 
about the relationship between the signed matter s and the 
stripped signed matter s′. It is obvious that the signer in this 
protocol is unable to trace s′ from s because s′ is generated 
by applying the secret key ni of requester Ri. So this proto-
col satisfies the blindness property. 
 
Example: 
Step 1: Let the elliptic curve equation be y2 = x3 + x + 1 
(mod 5). The base point G = (4, 2) on the elliptic curve is 
determined.  Make the elliptic curve equation and the base 
point public. 
Step 2: A signer selects a random element 7 as his secret 
key and then generates his corresponding public key Ps, 
where Ps  7× (4, 2) (mod 5). 
Step 3: A requester selects a random element 11 as his 
secret key and then generates his corresponding public key 
Pi, where Pi ≡ 11× (4, 2) (mod 5). 
Step 4: The requester sets his blinding factor as (11 × Pi) 
so as to transform his message m into a blinded message 
α, where α ≡ m× (11× Pi) (mod 5). Then he sends the 
blinded message α to the signer.  
Step 5: Signer randomly selects number 21 as the second 
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blinding factor. Signer should check whether (α, 21) in his 
database.  If  yes,  signer  selects  a distinct  number  for  
the  in-coming  identical blinded  message.  Then he gene-
rates a pair of blind signatures (r, s) where r ≡ 21 × α (mod 
5) and s ≡ (21 + 7) × α (mod 5). At last, he sends the mes-
sage-signature pair (α, (r, s)) back to the requester. 
Step 6: Requester strips s from (r, s) by applying his own 
secret key 11 and the public key Ps of the signer to yield s: 
s − m× 11 × Ps  (mod 5). And then he also computes m= 
11(11 −1) ⋅ m.  At last, he publishes the triple (m′, s′, r). 
 
Verification phase: 
Anyone can use the signer‟s public key Ps to verify the au-
thentication of the signature (m′, s′, r) by checking whether 
the formula r ≡ s′− m′× Ps (mod 5) holds. 
 
PROOF: 
The validity of the signature (m′, s′, r) can be easily be 
shown as follows, since s′ ≡ s − m× 11 × Ps (mod 5), and m′ 
= 11 (11−1) ⋅ m. We have s′− m′× Ps = s − m× 11 × Ps − 
m′× Ps = s − m×11 × Ps − 11 (11 −1)⋅ m× Ps = s − m × 11 × 
Ps − 11 × 11 × m × Ps + 11 × m × Ps   = s − 11 × 11 × m × 
Ps = (21 + 7) × α − 11 × 11 × m × Ps   = (21 + 7) × m × (11 
× Pi) − 11 × 11 × m × Ps  = 21 × m × 11 × Pi + 7 × m × 11 × 
Pi − 11 × 11 × m × Ps  = 21× m × 11 × Pi + 7 × m × 11 × 
11× (4, 2) − 11 ×11 × m × 7× (4, 2)  = 21× m× 11 × Pi = 21 × 
α ≡ r (mod 5) Advantage: It satisfies all the properties of 
blind signature scheme. 
 
1.5.4. “Implementation of Blind Digital Signature Using 
ECC” by MS.Dhanashree M.Kuthe, Prof. Avinash J. 
Agrawal [5]. 
This scheme proposed is based on elliptic curve crypto-
graphic algorithm named “The Electronic Voting”. The se-
lection of this algorithm is difficult to solve. The algorithm is 
used in the combination with a hashing function as the 
blinding factor to scramble the contents of the message to 
be signed by the signer. This article uses the concept of 
“zero knowledge proof”. 
Zero knowledge proof: A zero-knowledge proof is a way that 
a “prover” can prove possession of a certain piece of infor-
mation to a “verifier” without revealing it. This is done by 
manipulating data provided by the verifier in a way that 
would be impossible without the secret information in ques-
tion. Zero-knowledge proofs are proofs that yield nothing 
beyond the validity of the assertion. That is, a verifier ob-
taining such a proof only gains conviction in the validity of 
the assertion. This is formulated by saying that anything 
that is feasibly computable from a zero-knowledge proof is 
also feasibly computable from the (valid) assertion itself (by 
a so-called simulator) because it enables to force parties to 
behave according to a predetermined protocol. This 
scheme consists of six phases. 
 
Phase I: Key Generation: 
In this phase, the private keys and public keys are generat-
ed using elliptic curve cryptographic algorithm. In this 
phase, a number „k‟ is chosed randomly between 1 to (n-1) 
to be served as the private key. This private key is then 
treated with the base point of the formed elliptic curve and 
computes the public key. 
 
 

Phase II: Blinding: 
Here, the voter elects the vote (message). As the votes of 
the individuals should be kept confidential the votes (mes-
sage) are blinded. A blinding factor is selected and the vote 
(message) is then treated with this blinding factor to blind 
the vote that is to hide the vote from others. The blinding 
factor chooses should possess an existing inverse of itself 
so that the message blinded could also be unblinded when 
required. 
 
Phase III: Requester Phase: 
In this phase, the voter generates a digital signature using 
his private key using the scheme of ECC. The voter then 
sends the entire four entities to the signer as a request for 
authentication. The entities comprise of identification de-
tails, blinded message, digital signature and a proving fac-
tor that proves the voter to be a valid citizen. Here, the fac-
tor that proves the voter to be a valid citizen uses the con-
cept of zero knowledge .A valid citizen possesses a private 
key to oneself but to prove oneself to be a valid citizen one 
cannot reveal the private key as it is to be kept confidential 
or intruder may misuse it. The zero knowledge concepts 
work best in this situation. Here the voter will prove to pos-
sess a private key without revealing the private key. 
 
Phase IV: Signing Phase: 
In this phase, the signer initially will have the incoming re-
quest from the voter with four entities. After receiving the 
request message the signer verifies for two matters. First, 
whether requester is a valid voter or not and this is done by 
cross verifying the proving factor. Secondly, signer notes 
the identification details and checks whether requester has 
already voted or not. If the requester through both the mat-
ters the signer generates blind signature for the particular 
requester and authenticates the voter. The signer then rep-
lies the requester with message-signature pair. The signer 
displays the identification details and the public keys of the 
voters those whose have voted. 
 
Phase V: Unblinding: 
Voter after receiving the message - signature pair, the mes-
sage is unblinded and the unblinded message - signature 
pair is sent to the voting centre acting as a verifier and the 
counter of the votes. Here, the message is unblinded as 
when the message-signature pair is sent to the voting cen-
tre the counter must know to whom the voter has voted to 
be able to count the number of vote for individual elective. 
 
Phase: VI: Verification: 
Verifier after receiving the unblinded message - signature 
verifies the signer„s blind digital signature using the public 
key of the signer. As the signature is verified the count is 
incremented for elective that is voted. Verifier now displays 
all the digital signatures and blind digital signatures pairs. 
Hence the voter is ensured that his/her vote is counted. And 
no would come to know who voted to whom because only 
voter know about his own digital signature and blind digital 
signature received from signer. 
 
Advantages: 
The voter after choosing the vote blinds it as the signer 
should not be able to know to whom the voter has voted so 
the voter‟s vote remains confidential. Signer signs the 
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blinded message and hence the blind digital signature.  
When the blind digital signature - message pair is received 
by the voter, the message is unblinded.  This unblinded 
message along with blind digital signature is sent to the 
verifier so that the verifier would see to whom the voter has 
voted for and update the counters.  
 
Problem Statement  
The objectives of this thesis are: To propose a ECC base 
blind signature scheme, resistant against universal forgery 
attack. To propose some methodologies to prevent the at-
tack proposed on Lee et al.‟s blind signature scheme by Lin 
et al.  
 
Thesis Organization  

The rest of the thesis is organized as follows. 
 
Chapter 2 describes the mathematics of cryptography. It 
describes the methods required to generate the prime 
numbers, the methods to test the primality of a number,the 
cryptographic hash functions to generate the message di-
gest and the basic building blocks of discrete logarithm 
problem. 
 
Chapter 3 describes the proposed normal blind signature 
scheme and the Car-menish et al.‟s scheme [25] .We have 
proposed an universal attack [31] on the Carmenish et al.‟s 
scheme. 
 
Chapter 4 describes the Lee et al.‟s blind signature scheme 
[10] and the pro-posed improvement over it to prevent the 
attack proposed by Lin et al. [27] 

 
Chapter 2 

 
2. Mathematical Background 

 

2.1 Mathematics of Cryptography 
The mathematics of cryptography is a vast area of concern 
now a day. It can be differentiated into two parts:- 
 
1. Mathematics of Symmetry-key cryptography  
It describes Integer arithmetic, Modular Arithmetic, Matrices 
and Linear Congruence, Different Algebraic Structures . 
  
2. Mathematics of Asymmetry-Key cryptography 
It defines the concept of Primes, Primality Testing , Factori-
zation , Chinese Remainder Theorem, Quadratic Congru-
ence ,Exponentiation and Logarithm etc. However in this 
article the algebraic structures are of key concern. 
 
2.1.1 Basic algebraic structures 
The combination of set and the operations that are applied 
to the elements of set is called algebraic structure.  
 
Groups: Definition 3.1: A Group (G) is a set of elements 
with a binary operator “•" that satisfies the following four 
properties:  
1. Closure: If x and y are the elements of G, then z = x •y is 
also an element of G. 
2. Associativity: If x, y and z are elements of G, then (x •y) 
•z = x •(y •z). 
3. Existence of identity: For all x in G, there exist an ele-

ment e, called the identity element, such that e •a = a •e = 
a. 
4. Existence of inverse: For each x in G, there exists an 
element x0, called the inverse of x, such that x •x0 =x0 •x = 
e. Along with those properties if it also satisfies the com-
mutative property then it is called as commutative group or 
abelian group. Commutative property means for all x and y 
in G, we have x •y = y •x. 
 
A commutative group also called an abelian group sa-
tisfies the above properties along with the commutative 
property. 
Ring: A Ring is an abelian group structure with two opera-

tions. It is denoted as R =<{…}, >.The first operation 
must satisfy all the five properties that are required for an 
abelian group. The second operation must satisfy only the 
first two. In addition, it should also satisfy the Distributive 
property which states that for all x, y and z elements of 
R, we have x¤(y . z) = (x¤y) . (x¤z) and (x . y) ¤ z = (x¤z) . 
(y ¤  z). A Ring is said to be commutative ring if the second 
operation also satisfy the commutative property. 
Field: A Field, denoted by F =<{…},  >, is a commutative 
ring in which the second operation satisfies all the five 
properties defined for the first operation except that the 
identity of the first operation. 
Finite Fields: Only finite fields are extensively used in cryp-
tography. Galois showed that for a field to be finite the 
number of elements should be Pn, where p is a prime and n 
is a positive integer. The finite fields are usually called as 
Galois fields and denoted as GF (Pn). 
GF (P): When n=1, we have GF (P) field [2, 4]. This field 
consists of the elements 0, 1, ..., P-1, with two arithmetic 
operations addition and multiplication.  
 

2.2 Secure hash algorithm (SHA-1): 
The Merkle-Damgard scheme is the basic for many crypto-
graphic hash functions today. We should use a compres-
sion function that is collision resistant. There are two differ-
ent approaches in designing a hash function: it can be 
made from scratch like MD,MD2, MD4, MD5, SHA, SHA1. 
Second approach is that it can also be designed by using 
symmetric key block cipher. SHA-1 hash function is being 
used in our schemes. A hash function is a function hash () 
which should satisfy the following properties: 
• Compression hash (): takes input m of arbitrary length and 
produce a fixed length string output hash(m). 
• Non-invertible :Given hash(m) and hash() it is difficult to 
get m. 
 
Two types of hash function are discussed: keyed or non-
keyed hash function. Modification detection code (MDC)is a 
non-keyed hash function which is further divided into one 
way hash function(OWHF) and collision resistance hash 
function (CRHF). Both of them supports random oracle 
model. In our thesis work we have used the SHA-1, one 
way hash function, for the message digest. This compres-
sion function will give a fixed length output of 160 bits. Max-
imum message size that it takes is 264-1 and the block size 
is 512 bits.. Total 80 numbers of rounds has been used with 
a word size of 32 bits. 
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2.3 Elliptic curve Cryptosystem 
 
2.3.1 Introduction 
Since the invention of public key cryptography in 1976 by 
Whitefield Diffe and Martin Hellman numerous public key 
cryptographic systems have been proposed. All of these 
systems are based on the difficulty of solving a mathemati-
cal problem. Over the years, many of the public key crypto-
graphy systems have been broken and some are proved to 
be impractical. Today only three types of system are consi-
dered to be safe, secure and efficient. They are, 
1. Integer factorization problem (IFP) 
2. Discrete Logarithm Problem (DLP) 
3. Elliptic Curve Discrete Logarithm Problem (ECDLP) 
 
2.3.2 Integer factorization problem 
The integer factorization problem (IFP) is the following: giv-
en a composite number n that is the product of two large 
prime numbers p and q, find p and q. While finding large 
prime numbers is a relatively easy task, the problem of fac-
toring the product of two such numbers is considered com-
putationally intractable if the primes are carefully selected. 
Based on the difficulty of this problem, Rivest, Shamir and 
Adleman developed the RSA public-key cryptosystem. 
 
2.3.3 Discrete Logarithm Problem 
If p is a prime number, then Zp denotes the set of integers 
{0,1,2,………,p – 1}, where addition and multiplication are 
performed modulo p. It is well-known that there exists a 
non-zero element α Є Zp such that each non-zero element 
in Zp can be written as a power of α such an element α is 
called a generator of Zp. The discrete logarithm problem 
(DLP) is the following: given a prime p, a generator α of Zp, 
and a non-zero element β Є Zp, find the unique integer k, 
0…k…p-Є, such that βα = k(mod p). The integer k is called 
the discrete logarithm of β to the base α.  
 
2.3.4 Elliptic Curve Discrete Logarithm Problem 
If q is a prime power, then Fp denotes the finite field con-
taining q elements. In applications, q is typically a power of 
2 (2m) or an odd prime number (p). The elliptic curve dis-
crete logarithm problem (ECDLP) is the following: given an 
elliptic curve E defined over Fq, a point PЄ(Fq) of order n, 
and a point QЄ(Fq), determine the integer k,0…k…p-1, 
such that Q = kP, provided that such an integer exists. 
 
2.3.5 Comparison 
Figure 3.1 compares, the time required to solve an instance 
of a problem based on ECC with the time required to solve 
the problem based on IFP or DLP. Here the time is meas-
ured in MIPS. As a benchmark, it is generally accepted that 
1012 MIPS years represents reasonable security at this 
time. In the Figure 3.1 the times of RSA and DSA are 
grouped together because the asymptotic running time for 
both is same. As we can see that to achieve reasonable 
security, RSA and DSA should employ 1024-bit modulo, 
while a 160-bit modulus should be sufficient for ECC. 
Moreover, the security gap between the systems increases 
dramatically as the modulo sizes increases.  
 
 
 
 

Figure 2.1 : Comparison of security level 
 

2.4 Elliptic curves over real numbers 
An elliptic curve over real numbers may be defined as the 
set of points (x,y) which satisfy an elliptic curve equation of 
the form: 
 
y2 = x3 + ax + b, 
 
where x, y, a and b are real numbers. Each choice of the 
numbers a and b yields a different elliptic curve. For exam-
ple, a = -4 and b = 0.67 gives the elliptic curve with equa-
tion y2 = x3 - 4x + 0.67; the graph of this curve is shown 
below: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 : An Elliptic Curve over real numbers 

 
If x3 + ax + b contains no repeated factors, or equivalently if 
4a3 + 27b2 is not 0, then the elliptic curve y2 = x3 + ax + b 
can be used to form a group. An elliptic curve group over 
real numbers consists of the points on the corresponding 
elliptic curve, together with a special point O called the point 
at infinity. 

 
2.4.1 : Adding distinct points P and Q        
Suppose that P and Q are two distinct points on an elliptic 
curve, and the P is not -Q. To add the points P and Q, a line 
is drawn through the two points. This line will intersect the 
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elliptic curve in exactly one more point, call -R. The point -R 
is reflected in the x-axis to the point R. The law for addition 
in an elliptic curve group is P + Q = R. For example:  
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2.3 : Adding distinct points P and Q of an elliptic 

curve over real numbers                                                                                        
 
The line through P and -P is a vertical line which does not 
intersect the elliptic curve at a third point; thus the points P 
and -P cannot be added as previously. It is for this reason 
that the elliptic curve group includes the point at infinity O. 
By definition, P + (-P) = O. As a result of this equation, P + 
O = P in the elliptic curve group . O is called the additive 
identity of the elliptic curve group elliptic curves have an 
additive identity. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 : Showing the additive identity of a elliptic curve 
over real numbers 

 
To add a point P to itself, a tangent line to the curve is 
drawn at the point P. If yP is not 0, then the tangent line 
intersects the elliptic curve at exactly one other point, -R. -R 
is reflected in the x-axis to R. This operation is called doubl-
ing the point P; the law for doubling a point on an elliptic 
curve group is defined by:   P + P = 2P = R 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 2.5 : Adding a point to itself in an elliptic curve 

over real numbers 
 

  P + P = 2P = R.   
 
2.4.2 Adding distinct points P and Q Mathematically 
When P = (xP,yP) and Q = (xQ,yQ) are not negative of each 
other,  
P + Q = R where  
s = (yP - yQ) / (xP - xQ)  
xR = s2 - xP - xQ and yR = -yP + s(xP - xR)  
Note that s is the slope of the line through P and Q.  
2.4.3 Doubling the point P Mathematically 
When yP is not 0,  
2P = R where  
s = (3xP2 + a) / (2yP )  
xR = s2 - 2xP and yR = -yP + s(xP - xR)  
 
2.5 Elliptic curves over Fp 
Recall that the field Fp uses the numbers from 0 to p - 1, 
and computations end by taking the remainder on division 
by p. For example, in F23 the field is composed of integers 
from 0 to 22, and any operation within this field will result in 
an integer also between 0 and 22. An elliptic curve with the 
underlying field of Fp can formed by choosing the variables 
a and b within the field of Fp. The elliptic curve includes all 
points (x,y) which satisfy the elliptic curve equation modulo 
p(where x and y are numbers in Fp).  For example: y2 mod 
p = x3 + ax + b mod p has an underlying field of Fp if a and 
b are in Fp. If x3 + ax + b contains no repeating factors (or, 
equivalently, if 4a3 + 27b2 mod p is not 0), then the elliptic 
curve can be used to form a group. An elliptic curve group 
over Fp consists of the points on the corresponding elliptic 
curve, together with a special point O called the point at 
infinity. There are finitely many points on such an elliptic 
curve.  Recall that a is one of the parameters chosen with 
the elliptic curve and that s is the tangent on the point 
P. There are several major differences between elliptic 
curve groups over Fp and over real numbers. Elliptic curve 
groups over Fp have a finite number of points, which is a 
desirable property for cryptographic purposes. Since these 
curves consist of a few discrete points, it is not clear how to 
"connect the dots" to make their graph look like a curve. It is 
not clear how geometric relationships can be applied. As a 
result, the geometry used in elliptic curve groups over real 
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numbers cannot be used for elliptic curve groups over Fp. 
However, the algebraic rules for the arithmetic can be 
adapted for elliptic curves over Fp. Unlike elliptic curves 
over real numbers, computations over the field of Fp involve 
no round off error - an essential property required for a 
cryptosystem. 
 
2.5.1 Adding distinct points P and Q 
The negative of the point P = (xP, yP) is the point -P = (xP, -
yP mod p). If P and Q are distinct points such that P is not -
Q, then  
P + Q = R where  
s = (yP - yQ) / (xP - xQ) mod p  
xR = s2 - xP - xQ mod p and yR = -yP + s(xP - xR) mod p 
Note that s is the slope of the line through P and Q.  
2.5.2 Doubling the point P Provided that yP is not 0,  
2P = R where  
s = (3xP2 + a) / (2yP ) mod p  
xR = s2 - 2xP mod p and yR = -yP + s(xP - xR) mod p  
 
2.6 Elliptic curve over F(2m) 
Recall that a is one of the parameters chosen with the ellip-
tic curve and that s is the slope of the line through P and Q.  
An elliptic curve with the underlying field F(2m)  is formed 
by choosing the elements a and b within F(2m) (the only 
condition is that b is not 0). As a result of the field F(2m)  
having a characteristic 2, the elliptic curve equation is 
slightly adjusted for binary representation:  
 
y2 + xy = x3 + ax2 + b  
 
Elliptic curve groups over F(2m)  have a finite number of 
points, and their arithmetic involves no round off error. This 
combined with the binary nature of the field, F(2m) arithmet-
ic can be performed very efficiently by a computer. The fol-
lowing algebraic rules are applied for arithmetic over F2m : 
 
2.6.1 Adding distinct points P and Q 
The negative of the point P = (xp, yp) is the point -P = (xp, 
xp + yp). If P and Q are distinct points such that P is not -Q, 
then  
P + Q = R where  
s = (yp – yq) / (xp+ xq)  
xr = s2 + s + xp + xq + a and yr = s(xp+ xr) + xr+ yp  
As with elliptic curve groups over real numbers, P + (-P) = 
O, the point at infinity. Furthermore, P + O = P for all points 
P in the elliptic curve group.  
 
2.6.2 Doubling the point P 
If xp = 0, then 2P = O  
Provided that xp is not 0,  
2P = R where  
s = xp + yp / xp 
xr = s2+ s + a and yr= xp 2 + (s + 1) * xr 
Recall that a is one of the parameters chosen with the ellip-
tic curve and that s is the slope of the line through P and Q . 
 
2.7 ECC Domain Parameters: 
Elliptic curve cryptography (ECC) domain parameters over 
GF(P), can be represented by a six tuple: E = (q, a, b, G, n, 
h), where q = P or q = 2m, where m is a natural number. a 
and b are the co-efficient of x3 and x respectively used in 
the equation. 

Y2= x3 + ax + b (mod P) for q = P ¸ 3 
Y2 + xy = x3 + ax2 + b for q = 2m ¸ 1 
G is a base point on the elliptic curve. n is prime number 
which is of the order of G. The order of a point on an elliptic 
curve is the smallest positive integer r such that rp = 
1.Finally h = (E/n). where |E| represents the total number of 
points on elliptic curve and it is called the curve order. 
 
2.8 ECC key generation 
1. Receiver chooses E(a,b) with an elliptic curve over GF(p) 
or GF(2n). 
2. Receiver chooses a point on the curve e1(x1,y1) . 
3. Receiver chooses an integer d. 
4. Receiver calculates e2(x2,y2)=d*e1(x1,y1).Here multipli-
cation means multiple addition of points. 
5. Receiver announces E (a,b), e2(x2,y2),e1(x1,y1) as his 
public keys and keeps d as private key. 
 

3. Proposed BDS scheme 

The proposed BDS scheme was derived from a variation of 
the DSA. Our BDS scheme, meanwhile, is derived from a 
variation of the ECDSA, and again it has 5 phases: 
• Initialization, 
• Blinding, 
• Signing, 
• Unblinding, 
• Verifying. 
 
In our proposed scheme, we used the elliptic curves over 
the Fp prime field, which has been suggested by the Na-
tional Institute of Science and Technology (NIST) and is 
called Federal Information Processing Standard 186-2 
[18,19]. According to the Standards for Efficient Cryptogra-
phy Group [20], elliptic curve domain parameters over Fp 
are defined as a six tuple: T = (p, FpabGnh), (1) where p is 
an integer specifying theFp finite field and ab  Fp are integ-
ers specifying the elliptic curve E(Fp) defined by Eq. (2): 
 
E (Fp) : y2 ≡ x3 + ax + b (mod p), (2) 
 
Where G = (xGyG)is a base point onE(Fp), n is a prime 
number defining the order of G, and h is an integer defining 
the cofactor: h =# E(Fp)n . 
 

3.1. Initialization and key pair generation for ECDSA 
The signer defines the elliptic curve domain parameters T , 
defined as in Eq. (1). Next, for each request, an integer k is 
randomly selected by the user and the elliptic curve point ´R 
is calculated accordingly (refer to Table 1 for all abbrevia-
tions used in this section): 
 
´R= kG = (x´1,y´1),     (3) 
 
´r= ´x1 (mod n).     (4) 
 
In addition, the signer checks whether Eq. (5) holds. 
 
´r = 0                     (5) 
 
If the result is true, the signer sends the elliptic curve point 
´R to the requester. If the result is false, then the signer se-
lects another k randomly and repeats Eqs. (3) and (4) until 
he finds a ´r fulfilling Eq. (5). 
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Table 3.1. Interpretation of abbreviations used 
throughout Section 3. 

 

    

Abbrev-
iation 

 Interpretation  

T  Elliptic curve domain parameters  

p  Order of the finite field Fp, integer  

Fp  Finite field  

a, b  Coefficients defining the elliptic curve  

G  Generator point  

n  Order of G, a prime number  

h  Cofactor, integer  

ECC  Elliptic curve cryptography  

ECDSA  Elliptic curve digital signature algorithm  

H (:)  Hash value  

d  Private key of the signer  

Q  
Public key of the signer, a point on the elliptic 
curve 

 

m  Message  

m´  Blinded message  

s  Signature  

s´  Blind signature  

r  x coordinate of R  

r´ 
 ́   
 x coordinate of R‟  

´  
Points on the elliptic curve 

 
R, R‟   

A, B, k  Random integer numbers  

(x,y)  Coordinates for the Cartesian system  

 
To generate the private and public key of the signer, the 
following steps are followed: 
Integer d is chosen randomly in the range (1, n-1). 
The elliptic curve point of Q is calculated as in Eq. (6): 
 
Q = dG = (xQ, yQ) .     (6) 
 
With these calculations, the public key of the signer is as-
signed as point Q and the private key of the signer is as-
signed as integer d. 
 

3.2. Blinding phase 
In order to blind the message m, the owner of message m 
needs the elliptic curve domain parameters T of the signer; 
refer to Eq. (1). Blinding is achieved through the following 
steps, which are shown in Figure 1: Signer sends the elliptic 
point ´R (refer to Eq. (3)) to the requester, which will be 
used as the blinding coefficient. Requester calculates ´r 
from the elliptic point ´R , as shown in Eq. (4).  
3. Requester randomly chooses integers A and B, which are 
in the range of (1, n-1). 
4. Requester calculates the elliptic point R: 
 
R = A´R + BG = (x1y1).                                 (7) 
 
5. Requester calculates r from the elliptic point R, which 
was given in Eq. (7): 
 

r = x1 (mod n).      (8) 
 
6. Requester generates the blinded message ´m and sends 
it back to the signer for the signing operation: 
 
´m = AH (m) ´r r−1 (mod n)                           (9) 
 
Where H is the “Hash” function, and in our scheme, we use 
the SHA-1 [21] algorithm as the hash function. 
 

3.3. Signing phase 
After the signer receives the blinded message ´m from the 
requester, he generates the blind signature ´s by following 
these steps, which are also shown in Figure 1: 
1. Signer calculates ´r from the elliptic point ´R , as shown 
in Eq. (4). 
2. The private key of the signer, d, was generated in the 
initialization phase. 
3. k is a random integer that was generated in the initializa-
tion phase. 
4. ´s is calculated as shown in Eq. (10): 
 
´s = d´r + k ´m (mod n).          (10) 
 

 
 

Figure 3.3. “Blinding” and “Signing” phases of the proposed 
BDS scheme. 

 

3.4. Unblinding phase 
When the requester receives the blind digital signature ´s 
from the signer, the unblinding operation is needed to ob-
tain the digital signature (s, R) on message m, as shown in 
Figure 2. 
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1. Requester calculates ´r from the elliptic point ´R , as 
shown in Eq. (4). 
2. Requester verifies whether ´r and ´s are in the range of 
(1, n-1). If so, the requester generates the digital signature 
(s, R) of the signer on message m, as shown in Eq. (11): 
 
s = ´s r ´r−1 + BH (m) (mod n).    (11) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figurfigure 3.4 “Unblinding” and “Verifying” phases of the 

proposed Blind Signature scheme. 
 

3.5. Verifying phase 
Any party that has the elliptic domain parameters T of the 
signer (refer to Eq. (1)) can verify the digital signature of (s, 
R) on message m by following these steps, which are also 
shown in Figure 2: 
 
u1 = sG (mod n).     (12) 
 
u2 is calculated using the public key of the signer, Q: 
 
u2 = rQ + H (m)R (mod n).   (13) 
 
If the statement of u1 = u2 is met, then the signature is veri-
fied as valid; otherwise, it is considered invalid. 
 

3.6. Correctness proof of the proposed scheme 
We begin by expanding u2 , defined in Eq. (13), by substi-
tuting Q with dG according to Eq. (6): 
 
u2 = rdG + H (m)R (mod n).           (14) 
 
Since from Eq. (7) we know that R = A´R + BG, then we can 
expand Eq. (14) as follows: 
 
u2 = rdG+ H (m)A´R + H (m)BG (mod n) .           (15) 

 
Using Eq. (3), we substitute ´R with kG and we get: 
 
u2 = rdG + H (m) AkG + H (m)BG (mod n) .     (16) 
 
Now, by expanding u1 , defined in Eq. (12), we need to 
achieve the same expression shown in Eq. (16). Since from 
Eq. (11) we know that s = ´s r ´r−1 + BH (m) (mod n), then 
Eq. (12) becomes: 
 
u1 = ´s r ´r−1G + BH (m)G(mod n).       (17) 
 
By substituting ´s with d´r + k ´m (mod n) from Eq. (10), Eq. 
(17) results in: 
 
u1 = d´r r ´r−1G + k ´mr ´r−1G + BH (m)G(mod n).    (18) 
 
By rearranging Eq. (18) we get: 
 
u1 = rdG´r´r−1 + k ´mr ´r−1G + H (m)BG(mod n).  (19) 
 
From Eq. (9), substituting ´m with AH (m) ´r r−1 (mod n) in 
Eq. (19) results in: 
 
u1 = rdG´r´r−1 + kAH(m) ´r r−1r ´r−1G + H (m)BG(mod n).  
        (20) 
 
From modular arithmetic, we know that ´r´r−1 = 1(mod n) 
and rr−1 = 1(mod n). By substituting these into 
Eq. (20) we get: 
 
u1 = rdG + kAH(m)G + H (m)BG(mod n).   (21) 
 
Eq. (21) is the same expression shown in Eq. (16). There-
fore, we have proven that u1 = u2 by showing that  Eqs. 
(16) and (21) are equal to the same expression. 
 

4. Discussions 

In the applications, the key length of the algorithm is deter-
mined according to the desired security level. Today, it is 
most practical to use a key length of between 160 and 192 
bits for ECC systems. In the case of RSA, the key length is 
1024 bits for commercial applications and 2048 bits for 
more critical applications (where more security is needed). 
These key lengths correspond to the 192-bit and 224-bit 
ECC key lengths, respectively [22]. While the security of 
Chaum‟s BDS scheme [1] is based on the difficulty of the 
factorization problem [23] the security of Camenisch et al.‟s 
BDS scheme [17] is based on the difficulty of the discrete 
logarithm problem [24]. On the other hand, the security of 
our BDS scheme relies on the elliptic curve discrete loga-
rithm problem, which is considered to be much more diffi-
cult than either of the other problems [12]. In our work, to 
provide comparisons for the reader, the implementation and 
simulation of both the Blind Signature schemes of [1] and 
[17] have been accomplished. A 1024-bit RSA key length is 
chosen for the implementation of [1] and a 1024-bit DSA 
key length is chosen for the implementation of [17]. To pro-
vide further comparison for the reader, we have issued our 
scheme with a variety of NIST-suggested elliptic curves 
(NIST192, NIST224,NIST256, NIST384, and NIST521). 
This means that the key length of our scheme changes de-
pending on the curve (192 bits, 224 bits, 256 bits, 384 bits, 
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and 521 bits, respectively). For example, if the NIST192 
elliptic curve is chosen for our scheme, then the key length 
is apparently 192 bits.The test-bed system consists of a 
1733-MHz processor with 512 MB of DDR-2 533-MHz 
RAM. Implementation is based upon the C programming 
language. For elliptic curve arithmetic operations, Miracle 
Library is used [25]. In order to compare the time consump-
tions of the algorithms, the clock command of the C pro-
gramming language has been used. It gives the time that is 
spent on the processor between 2 events. For the same 
plain text message (m consists of 431 bytes), the time (in 
seconds) spent on the processor for the relevant algorithms 
is given in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. Comparisons of processing time for various 
BDS schemes classified according to phases. 

 
Figure 4.1 is sorted according to the phases (blinding, sign-
ing, unblinding, and verifying) of the BDS schemes, while 
Figure 4 is sorted according to the types of the BDS 
schemes (Chaum‟s [1], Camenisch et al.‟s [17], and our 
scheme with the following elliptic curves: NIST192, 
NIST224, NIST256, NIST384, and NIST521). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2. Comparisons of processing times for various 

BDS schemes classified according to schemes . 
 
 

Table 4.1 gives the processing time (s) of our scheme com-
pared to other schemes, when the NIST192 elliptic curve is 
used for our scheme. Table 3 gives the performance im-
provement (%) of our scheme compared to other schemes, 
when the NIST192 elliptic curve is used for our scheme. In 
this case, it is clear that in terms of the processing time, our 
scheme outperforms Chaum‟s scheme [1] by about 96% 
and Camenisch et al.‟s scheme [17] by about 66%. 
 
Table 4.1. Processing time (s) of Blind Signature schemes. 

 

 
Our 
scheme 

Chaum‟s 
scheme 

Camenisch et al.‟s 
scheme 

Blinding 
phase 

0.0624 0.5267 0.0892 

Signing phase 0.0218 0.5156 0.0641 

Unblinding 
phase 

0.0374 0.0984 0.0732 

Verifying 
phase 

0.0470 0.4971 0.0499 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.3. Comparisons of processing times for various 
BDS schemes 

 
Table 4.2. Relative performance improvement (%) of our 

scheme compared to other schemes. 
 

 
For all of the phases (blinding, signing, unblinding, and veri-
fying), the fastest scheme is the one proposed in this study, 
which uses the NIST192 elliptic curve (in other words, the 
scheme that has a key length of 192 bits), and the slowest 
of all is Chaum‟s [1] scheme, which uses a 1024-bit RSA 
key length. It is important to mention that the key lengths for 

 

Chaum‟s 

scheme 

Camenisch et al.‟s 

scheme 

Blinding phase 88.15 30.04 

Signing phase 95.77 65.99 

Unblinding phase 61.99 48.90 

Verifying phase 90.55 5.81 
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the considered schemes are selected to provide equal se-
curity levels. For example, it has been proven that the secu-
rity levels of the 1024-bit key length RSA algorithm, 1024-bit 
key length DSA algorithm, and 160-bit key length ECC algo-
rithm are the same [26,27]. The computational effort 
needed to factor a 1024-bit size integer using the general 
number field sieve method is 3 × 1011 million instructions 
per second years, whereas the same effort is needed to 
compute elliptic curve logarithms of the 160-bit size elliptic 
point with the Pollard ρ-method [12]. In [12], it is suggested 
that a 192-bit size NIST elliptic curve is comparable to 
1024-bit size RSA and DSA key lengths in terms of the in-
tended cryptanalysis strength. Hence, we issued a 192-bit 
key length ECC algorithm, and, in this case, our scheme is 
not only faster but also more secure. Table 4 gives the 
comparable key sizes of the ECDSA and RSA/DSA algo-
rithms in terms of the computational effort for cryptanalysis 
[28]. 
 
Table 4.3. Comparable key sizes in terms of the computa-

tional effort for cryptanalysis [28]. 
 

ECDSA (size of the prime field in bits) 
RSA/DSA (modulus 
size in bits) 

112 512 

160 1024 

224 2048 

256 3072 

384 7680 

512 15,360 

 

5. Conclusions and future remarks 

In this thesis, we briefly introduced the concept of BDS, and 
later on, our contribution to the field was presented. Our 
proposed BDS scheme has lower complexity (i.e. in terms 
of computational load) and provides better security com-
pared to those in [1] and [17]. Our proposed scheme uses 
ECC (ECDSA), providing all of its advantages over the oth-
er PKC algorithms. It offers smaller key lengths for desired 
security levels, along with high-speed cryptographic 
processes, leading to low-complexity hardware and soft-
ware requirements [12]. These advantages are indispensa-
ble for applications where resource shortage is of prime 
importance, especially in mobile platforms. Our proposed 
scheme can be used in the applications where not only user 
anonymity but also processing time is critical under certain 
hardware constraints. According to the results; our pro-
posed scheme outperforms that in [1] by 96% and that in 
[17] by 66% in terms of processing time. Thus, our pro-
posed scheme leads to an apparent improvement in BDS 
systems. Eventually, this enhancement will drastically re-
duce the total cost of the commercial systems that are us-
ing BDS. The application of our scheme to smart cards, e-
commerce, and e-voting is left as future work for us to con-
sider. 
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