Mppt Enabled Dc-Dc Converter Based Bidirectional Inverter For Residential Photovoltaic System

D. Balaji, Mr. K. Vinoth

Student, 2. AP/EEE, KCG College of Technology.
Department of Electrical and Electronics Engineering, Anna University, Chennai, India
baladevain@gmail.com, vinothkrishna03@gmail.com.

Abstract: Photovoltaic (PV) private power system is an indispensable use of renewable imperativeness. The parallel-joined setup of PV modules instead of the arrangement joined design wound up discernible considering the security necessities and making full utilization of the PV made force for the PV private period structure. In this paper, a novel delicate exchanging voltage-encouraged full scaffold front-end converter-based inverter. The gadget voltage is clasped commonly by auxiliary regulation without dynamic cinching circuit or latent snubber. Zero-current exchanging of essential gadgets and zero-voltage exchanging of optional gadgets is accomplished. Delicate exchanging is innate owing to proposed auxiliary adjustment, load autonomous, and is kept up amid wide variety of info voltage and force exchange limit, and hence is suitable for PV applications.

Keywords: Full bridge front end converter, residential photovoltaic (PV) power system, soft switching.

I. INTRODUCTION
RENEWABLE essentialness has experienced astonishing advancement over the earlier decade in view of the speedy utilization of fossil empowers, concern of imperativeness security and green gas release. As showed by the report of International Vitality Agency, 57% of new power ability to 2030 will be as renewable types of progress. Distinctive renewable importance assets like wind turbines, sunlight based vitality, and so on., are made together with the huggeness stockpiling contraptions and significant force adornment, control and association structures to structure a crossbreed streamed period framework to give long haul supportability. One typical block diagram is shown in Fig. 1. One average piece chart is demonstrated in Hybrid appropriated force era framework. It can vanquish the wastefulness and trademark issues from the united commute plants. Among a mixture of renewable imperativeness resources, sun fueled photovoltaic (PV) has been ended up being especially. Sunlight based PV time is really adaptable that is versatile from little scale private application to extensive scale sun organized homesteads/force plants. It will contain a huge amount of offer of the new power limit added to 2030, identifying with virtually 27%. The private PV power structure accept a growing basic part in sun arranged renewable imperativeness. Obviously, PV modules have exceedingly nonlinear voltage–current qualities and the best commute point (MPP) changes basically with the including ecological variables, for occurrence, sun based irradiance and temperature. For private applications, the execution of PV inverter structure is viably to be affected by for the most part shadows and disarray of electrical parameters. The procedure of PV modules and separating power contraptions setup is squeezing with draw most persuading power from PV modules. Generally speaking, PV modules setups are sorted into three depictions: 1) united setup, 2) string/ multistring systems, and 3) module solidified converter (MIC) approach. In standard melded and string setup of PV modules, diverse PV modules are joined in plan to get sufficient dc-join voltage for reversal operation. Clearly, the execution of entire game plan related string of PV modules could be generally blocked in light of the module goof or fragmentary shading. Building joined PV systems with a few unmistakable power setups have been looked into considering enormity profit.

Fig. 1. Hybrid distributed power generation system.

Circulating air through and cooling module progression and PV dc-building-module (PVDCBM) based improvement are indicated to be suitable for private building melded application for its brilliant hostile to shading and against jumble shows. Cooling module advancement, general called MIC structure offers "fitting and play" offer by uniting PV module with dc/ventilating converter with individual MPP taking after (MPPT) control. Several air circulation and cooling framework modules are joined in parallel to the matrix. In Fig.2 the PVDCBM-based advancement in the private applications is demonstrated including PV modules, high meander early end converters, concentrated inverter and vitality stockpiling battery packs with bidirectional dc/dc converter. For a standard PV module, the MPP voltage range from 20 to 50 V. The high meander up dc/dc converter is utilized to reinforce the low yield voltage of the
PV modules to a solid 200 or 400 V dc-join with MPPT operation. Several PV modules are joined in parallel to achieve high power level. Concentrated inverter is used to convey circulating air through and cooling voltage for neighborhood weight or utility structure. Centrality stockpiling is utilized to demolition the abnormality of sun controlled noteworthyness or cross section shakiness and give the farthest point of force conditioner, component force channel and uninterruptible power supply.

Diagram of a high wander ahead of time end dc/dc converter is separating to change over wide enter voltage range into oversaw higher dc voltage with high adequacy. Non divided high wander up dc/dc converters in PV system joined application have been assessed in [8]. Three level converters ,fell help converters [10], traded capacitor converters [11], [12], bolster converters facilitated with a coupled inductor blend of coupled inductor and traded capacitor ,have been proposed and researched for sun controlled inverter applications. Parasitic effect of contraptions and inverse recovery issue of diodes are the essential issues and impediments for those converters with low profit and voltage get. High repeat (HF) transformer segregated dc/dc converter is needed to get high wander up degree and the galvanic disengagement between the PV modules and the utility. For voltage-fortified topologies, stunningly clearing electrolytic capacitor is for the most part anticipated that would cover the broad data current swell, happening enormous size, high cost, and contracted lifetime of PV structure. Differentiated and voltage-supported topologies, current-fed topologies showcase taking after inclination: 1) more diminutive information current swell; 2) lower transformer turns extent; 3) capacitive yield channel; and 4) no flux-unevenness issue. Regardless, it is uncommon that the current-empowered converter encounters high voltage spike over the switches at their turn-off

II. PROBLEM ANALYSIS

The proposed photovoltaic power structure contains PV show, battery imperativeness stockpiling system, high wander up full augmentation dc-dc converter, MPPT controller, bidirectional inverter, dc weights and cooling weights. Here full expansion dc-dc converter is used as front end dc-dc converter to fulfill high voltage get with most great power taking after capacity from sun based show and lessened no of turns. Full framework dc-dc converter involves full expansion inverter, high repeat transformer and voltage fourfold rectifier. Bidirectional inverter is used to make relationship amidst dc and aerating and cooling system. The good circumstances are mostly suitable for high power applications. Most amazing sun arranged viability would be finished with the aid of MPPT controller. Voltage tension and no of turns would be lessened by 1/4th. Compact and straightforwardness Shoot through effect will be decreased doubtless .High change extent is possible with most great utilization of renewable resources.

III. DESIGN

In outline, Fig 3 the information DC voltage is supported to high voltage, i.e the info voltage from PV cluster is given to MPPT Controller where the most extreme voltage can be followed and afterward it is given to the DC-DC converter. Here the DC- DC converter is called as Front end converter comprise of Voltage Quadrupler, High Frequency transformer, Voltage source inverter. The Voltage source inverter will change over the data DC to AC supply, and afterward it is given to High recurrence transformer which will change over the information voltage to twice and after that it is given to Voltage quadrupler which will change over the voltage to four times of its enter.
IV. MODES OF OPERATION:

MODE 1
In this mode, Fig 4 the source is from the PV cluster then the DC source will be sent through the switches S3 & S4. At that point the exchanged source will be sent to the essential side of the transformer slowing down. After the transformer the stream will be in half cycle, in it the capacitor will get charged and subsequently returns to the negative helper side. By this step the two capacitor will get charged and in the same next cycle the voltage will get duplicated and after that after the negative half cycle the voltage will get four times and tit then goes to the yield.

MODE 2
In this mode, Fig 5 the switches S1 & S2 will get ON and then it goes to the primary side of the transformer. Then the flow after the secondary transformer will be the negative cycle. In this flow the capacitors will get charged and then it returns to the positive side of the secondary side of the transformer. Then in the next step the capacitor will start to discharge at that time the voltage level will be increased twice as that of flowing voltage.
V. MPPT ALGORITHM

1) Start the program
2) Find out the voltage and current values
3) Calculate the current power values
4) Power output of system is checked by varying the supplied voltage
5) If on increasing the voltage, power is also increases then further ‘δ’ is increased otherwise start decreasing the ‘δ’
6) While decreasing voltage if power increases the duty cycle is decreased.
7) This step till maximum power point is reached. The corresponding voltage at which Maximum power point is reached is known as reference point (Vref).

5.1 PERTURB & OBSERVE

In the proposed method we used Perturb & Observe Mppt algorithm for getting the rated voltage and current from solar panels. The idea driving the “annoy and watch” (P&O) system is to alter the working voltage or current of the photovoltaic board until you acquire greatest force from it.

![Fig 6. Flow chart of P&O MPPT.](image)

Case in point, if expanding the voltage to a board builds the force yield of the board, the framework keeps expanding the working voltage until the force yield starts to abatement. The significant downsides of the P&O strategy are that the force acquired sways around the greatest force point in consistent state operation, it can track in the wrong course under quickly changing irradiance levels and burden levels, and the step estimate (the greatness of the change in the working voltage) decides both the rate of joining to the MPP and the scope of wavering around the MPP at unfaltering state operation. In Fig 7 Operation of Perturb & Observe is shown.

VI. CIRCUIT DIAGRAM

The circuit diagram of the proposed model is shown in Fig 8. The circuit diagram consist of Solar panel, High step-up full bridge dc-dc converter, DC micro grid, DC Load and battery. Here full bridge dc-dc converter is used as front end dc-dc converter to achieve high voltage gain with maximum power tracking capability from solar array and reduced no of turns. Front end converter consists of full bridge inverter, high frequency transformer and voltage quadruple rectifier. In the conventional method the push pull converter is used with voltage doubler circuit. This result is lot of disadvantages such as Shoot through effect will be very high at current fed inverter side. So it produces more power losses in switching devices. Maximum power point tracking isn’t possible due to current fed structure. Voltage stress will be present across the switching devices even if presence of voltage doublers. In the proposed method we
are just overcoming these disadvantages by using Full bridge inverter with Voltage Quadrupler circuit. The purpose of using High frequency transformer is to reduce the inductance value. In general if we increase the frequency the inductance value will be decreased.

\[\frac{XL}{L} = 2\pi f \]

Where \(f \) is the frequency
\(L \) is the inductance value
\(XL/L = 2\pi f \)

In the proposed model the frequency is kept as 20 KHZ, so the value of inductance will get reduced.

VII. HARDWARE DESCRIPTION
The hardware components which are used for this proposed model is explained briefly

7.1 PERIPHERAL INTERFACE

MOSFET GATE DRIVER
The High And Low Side Driver (IR2110) is a high voltage, fast power MOSFET and IGBT driver with autonomous high and low side referenced yield channels. Exclusive HVIC and hook safe CMOS innovations empower ruggedized solid development. Rationale inputs are good with standard CMOS or LSTTL yields, down to 3.3V rationale. The yield drivers emphasize a high heartbeat ebb and flow cushion stage. Proliferation deferrals are coordinated to streamline use in high recurrence applications.
regulation. Here two BJT’s (n-sort and p-sort) are utilized for enhancement. The driver circuit is shown in Fig 10.

7.2 INVERTER
A force inverter, or inverter, is an electrical force converter that progresses direct current (DC) to exchanging current (AC); the changed over AC can be at any obliged voltage. Strong state inverters have no moving parts and are utilized as a part of an extensive variety of uses, from little exchanging force supplies in PCs, to huge electric utility high-voltage direct current applications. Three-stage inverters are utilized for variable-recurrence drive applications and for high power applications, for example, HVDC power transmission. A fundamental three-stage inverter comprises of three single-stage inverter changes every joined with one of the three heap terminals. For the most fundamental control plot, the operation of the three switches is facilitated so one switch works at every 60 degree purpose of the principal yield waveform. The hardware component of inverter is shown in Fig 11.

Some of the features are
- \(I_{ds} = 8A; V_{ds} = 500V ; R_{ds(on)} = 0.850\Omega \)
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance.

7.4 POWERSUPPLY UNIT
The power supply unit for the microcontroller unit needs +5V supply DC. It can be given directly using any DC sources or by using the step down transformer for 230/12 V. The power supply unit is shown in Fig 13.

The primary ends are connected to the AC supply and the voltage is reduced to 12V using step down transformer. Using the bridge rectifier the 15V AC is converted to 15V DC with the help of four diodes. And by using voltage regulator the constant DC voltage is produced at the output ends. The voltage regulator is shown in Fig 14.

7.5 SIMULATION
The simulation circuit of the proposed model is shown in Fig 15. The simulation is done using the software called as “Matlab”. The proposed simulation circuit consist of PV array, HF transformers, DAB converter, Voltage quadrupler, battery, DC loads. In the simulation we have developed a small DC grid. The purpose of implementing this project is for future Dc loads. In the simulation we are getting 100 V for few seconds and the voltage is raised to 200 and above. This is why because, normally in residential every one used to have different loads say light loads or heavy loads. If the input solar panel is not be sufficient to deliver the power with the help of battery the energy is produced and then the power flow will be present in the grid even though the overload occurs.
Fig 16. Simulation circuit of proposed system.
VIII. SIMULATION OUTPUT

The simulation output of the proposed model is around 270 V with 500 ma of current. The simulation output is shown in Fig 17.

From the graph the x axis shows the time scale and y axis shows the voltage scale. The sudden rise in voltage is due the battery voltage, when overload occurs the input is not sufficient to deliver the power so the battery act as energy governing system.

8.1 BATTERY OUTPUT:

The battery output of the proposed model is around 80 and it is shown in Fig 18.

From the graph the x axis shows the time scale and y axis shows the voltage scale. And there is sudden discharge in the graph it is due to overload(ie when output is 10W when we add a load consumes 7W the remaining 3W can be used for anu other DC load but when we add or connect 5W load there will be insufficient in the power so the battery will satisfy the load requirements).

8.2 SPECIFICATIONS

The specifications of the proposed system is shown in the table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Components</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PV array</td>
<td>12V, 0.9A</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Transformer</td>
<td>220/125 v</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Battery</td>
<td>12v, 1.5 Ah</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>MOSFET switches</td>
<td>IRF940 (400 V, 5A)</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Inductor</td>
<td>47 uH, 10 mH, 200uH</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Capacitor</td>
<td>1000uF, 1200uF, 0.2uF</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>PN Junction diode</td>
<td>IN4007</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Microcontroller</td>
<td>dsPIC30F644/N302</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Current Sensor</td>
<td>15V/5V (hall type)</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>MOSFET driver</td>
<td>V2110</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Components of proposed model

IX. SOFTWARE REQUIRED

The softwares which are required for simulating and designing the circuit are

1. Tinycad v2.8.

9.1 ADVANTAGES OF THE PROPOSED METHOD

The advantages are

- Mostly suitable for high power applications
- Maximum solar efficiency would be achieved with the help of MPPT controller.
- Voltage stress and no of turns would be reduced by 1/4th
- Compact and low cost
- Shoot through effect will be reduced drastically.
- High conversion ratio is possible with maximum utilization of renewable resources.
- Switching losses are neglected.
- High performance.

9.2 PROTOTYPE

The prototype of the proposed model is shown in Fig 19. And it details about the entire hardware model consist of solar panel having 12v 0.9A, Front end converter has Full bridge inverter with High frequency transformer. And the Voltage Quad rupler which give the output to four times. The main advantage of using voltage Quad rupler is to reduce the ripples. In this project we are designed for Dc micro grid. Normally DC grid have some losses ie due to the ripples presence. This can be avoided using Voltage Quad rupler circuit which reduces the ripples present in the Dc line. And there is a DAB converter which is called as Dual Active Bridge converter which will perform both buck and boost operation. The purpose of using DAB converter is to store the energy from the DC line to the battery. And the main advantage is we cannot directly connect the battery to the DC grid because it delivers high voltage it should be reduced and it stored in battery.
X. CONCLUSION
An Energy Efficient Fast Tracking MPPT circuit is displayed in this task. The greatest force point is followed utilizing MPPT calculation i.e. Annoy and watch. Zero current exchanging and zero voltage exchanging is attained to. Exchanging misfortunes are disregarded in this venture. The proposed model is extensible and material to high voltage application. Utilizing voltage quad ruppler circuit the voltage is helped to four times and it relies on upon the information parameter. With the assistance of high recurrence transformer the estimation of inductor is lessened.

XI. FUTURE SCOPE
In future this venture can be utilized as a part of houses, healing centers and businesses and so on. The preferences of this venture are chiefly utilized for high power applications. Also, in future numerous machines will be in DC, so this will convey something new to this environment.

XII. REFERENCES

