
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 134
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Execution Of C++ Programs In Shortest Possible
Time (Nanoseconds Or Milliseconds)

Zaher Saif Al-Hashami

Email: ac.res@hotmail.com

ABSTRACT: Many programmers have multiple ways for programming in programming languages. Can reach the same result for a particular function
works in a short time compared with the same function in another program to ensure access the result in a longer time. Difference between good and
excellent programmers is reaching to the last result in short time and short way algorithm. In C++ programs could measure execution of some programs
with Nanoseconds and Milliseconds. In this article loop and condition statements in C++ programming could measure them execution in little
Nanoseconds or in Milliseconds. Comparison and approach between some programs algorithms are the method used in this paper. Time Execution
taking of some C++ programs is depending on the algorithm of the program and statement time take. Preprocessor has role in speedup some
Nanoseconds of execution of some C++ programs as compile time (convert to source code). These preprocessor statements like #define and #include
preprocessor directives. There are many circumstances control the speed of some programs execution. Architecture of programming progress as well as
hardware has role in speed of execution. The algorithm used in some C++ programs and execution of some functions is the topic of this article.

Keywords: Milliseconds, Nanoseconds, Comparison, preprocessor, #define, #include

1 INTRODUCTION
As known, the computer operates two different time scales.
The first level is execute instructions at a rate of one or
more per clock cycle. While each clock cycle requires only
around one nanosecond. This state time nanoseconds
executed based on the algorithm of the program or the way
of a programming as well as the hardware has role to state
if the program speed. The second is one is on macroscopic
scale, which the processor must respond to external events.
There are commonly multiprogramming systems inside the
computer, and according to Ugur Halıcı, 2007, processes
are performed in a pseudo parallelism as if each process
has its own processor. Also based on this author there is
only one processor but it switches back and forth. So when
he said execution of a process, he meant that the
processor’s operations on the process like changing its
variables, which all these done inside the computer in the
processor. Input and output data (I/O) work meant the
interaction of the process with the I/O operations like
reading from x file or writing to x file. Based on these
definitions, he classify programs as two types, the first is
processor bound program which is a program having long
processor bursts. The second is bound program a program
having short processor bursts [1], (Halıcı2007). According to
Roberto Cipolla, 2004, a program go through three phases:
the first is editing (writing the program) the second phase is
compiling like translating the program to executable code
and detecting errors and the fourth is running the program
and checking for logical errors which can call it debugging
in the programming. First the editing phase, consists of
editing a file by typing in the C++ program with a text editor
and making corrections if necessary. On the disk the
program stored as text file. The extension file.cc indicate
that it is C++ program. Next phase is the compiling; the
compiler translates the C++ program into machine
language code which it stored on the disk as a file. Then
linker then links the object code with can call it standard
library routines which the program may use and creates an
executable image and saved on the disk. The last phase is
execution, it is loaded from the disk to memory and the
computer's processing unit executes the program one
instruction at a time [2], (Cipolla, 2004). As what familiar

that one second is equal 1000 milliseconds and also equal
1000,000,000 nanoseconds. There are many Algorithms in
the C++ programs can programming it by them in short or
long ways. Could be compared some programs executed in
nanoseconds with other longer that doing the same
functions.

1.1 COMPILING IN C++
During testing a C++ program, it must compile the program
before running it. The compilation process is convert the
program written in human as readable language like C,
C++, java and vb.net into a machine code. It directly
understood by the Central Processing Unit inside the
computer. There are many stages involved during creating
a executable file from the source file. These stages include
Preprocessing, Compiling and Linking in C++. This means
that even if the program gets compiled. Hence most IDE
(Integrated Development Environment) like Eclipse, Geany
and others consider the term build for transforming source
code file to an executable file. There are two phases define
compilation in C++ programming: the first can call it the
preprocessing phase and the second is compilation phase.
In the preprocessing phase, the preprocessor changes the
Preprocessing according to the directives mentioned starts
with hash # sign. The C++ preprocessor takes the program
and deals with the # include directives. For example in C++
program #include<iostream> will tell the preprocessor to
read all the contents of the iostream header file and include
the contents into the program and generate the separate
C++ program file. C++ language supports many
preprocessor directives like #include, #define, #if and #else.
After preprocessing come the compilation which translate
C++ program into assembly low level. The compiler takes
the preprocessed file without any preprocessor directives.
After that can generates an object file containing assembly
level code then therefore, the object file created is in the
binary form. In the created low level object file. In each line
describes one low level machine level instruction.

This assembly phase converts object files in assembly
code into machine level instructions. The created file is a re-
locatable object code. Hence, the compilation phase

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 135
ISSN 2347-4289

Copyright © 2014 IJTEEE.

generates the re-locatable object program in different
places without have to compile again [3], (Prashant, 2013).

2 COMPARING 1

2.1 PROGRAM 1
#include <iostream.h>
void main()
{int d1, d2, d3, d4, sum = 0 ;
float average ;
cout << "Enter Four Degree : " ;
cin >> d1 >> d2 >> d3 >> d4 ;
sum =(d1+d2+d3+d4) ;
average = sum/4 ;
cout << endl ;
cout << "The Average of Student is " << average << endl ;}

The above C++ program is about calculating the average of
four values with usual stages, starting with entering the four
numbers d1, d2, d3, d4, then sum these numbers by sum
function. Then, come the last function to get average
calculating function and which take average = sum/4
statement. In the last statement in this average example of
C++ program count the average after identify it. In this
program there are some nanoseconds spent for execution
and there are extra statements added that could spend. The
program below spends approximately 10,000,000
nanoseconds (0.01 seconds) for execution, which
measures computer device clock start and end. It an
example for some measured execution of some C++
programs:

#include <time.h>
#include <iostream>
using namespace std;
int main()
{clock_t start, end;
start = clock();
//perform calculations for which performance needs to be
checked
end = clock();
cout << "Time required for execution: "
<< (double)(end-start)/CLOCKS_PER_SEC
<< " seconds." << "\n\n";
return 0;

2.2 Program 2
#include <iostream.h>
void main()
{int d1, d2, d3, d4 ;
cout << "Enter Four Degree : " ;
cin >> d1 >> d2 >> d3 >> d4 ;
cout << endl ;
cout << "The Average of Student is " << (d1+d2+d3+d4)/4 ;

This program is the same of above which calculate average
of d1, d2, d3, and d4 numbers with short statements.
Example sum = (d1+d2+d3+d4) this statement is not
mentioned in program2 while it exited in program1, also can
be seen that this statement average = sum/4 not mentioned
in program 2. These two statements in program1 are longer
and not concise compared in the last statement of program
2. Nanoseconds execution approximate time of program2 is

less that the execution time of program1. These two
programs are typical example of how to concise a short
time execution of C++ programming by short concise
statements.

In the below C++ program about stopclock, the execution
time spends approximately 0.832 seconds (832 000 000
nanoseconds or 832 milliseconds)[4]:

#include <boost/chrono.hpp>
#include <cmath>
int main()
{boost::chrono::system_clock::time_point start =
boost::chrono::system_clock::now();
for (long i = 0; i < 10000000; ++i)
std::sqrt(123.456L); // burn some time
boost::chrono::duration<double> sec =
boost::chrono::system_clock::now() - start;
std::cout << "took " << sec.count() << " seconds\n";
return 0;}

In this program the loop statement (for) took some time
before execution during calculating the duration in seconds
0.832 seconds. As define or undefined statement (for), it will
take more time calculations for execution.

3 COMPARING 2

3.1 PROGRAM 1
#include <iostream.h>
int main ()
{int n ;
cout << "Enter the starting number : " ;
cin >> n ;
while (n>0)
{cout << n << ", " ;
--n;}
cout << "FIRE!" ;
return 0 ;}
In program 1 above in comparing 2 there is execution of
while condition statement till a stated case (n>0). This
program will execute --n (n-1) until face this condition, then
if the condition not attain it will send this statement cout <<
"FIRE!".

3.2 PROGRAM 2
#include <iostream.h>
int main ()
{int a, b;
int result;
a = 5;
b = 2;
result = a - b;
cout << result;
return 0;}
In program 2 of comparing 3 a subtraction calculation is
written. The program started with identifying a, b and result.
This identification is as int and it gives a, and b numbers.
Then identify result=a-b. The last statement is: cout <<
result. In program 2 of comparing 3 can be seen that
executing subtracting calculation directly without any loop
or without any condition that must attain and that will fast
execution than program 1. In program 1there is loop and

http://www.boost.org/doc/libs/1_47_0/doc/html/chrono/reference.html#chrono.reference.cpp0x.duration_hpp.duration

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 136
ISSN 2347-4289

Copyright © 2014 IJTEEE.

while condition statement which may continue the execution
till stated case (a condition). Program2 an example of short
time execution of some statements C++ language. In
program2 milliseconds or even a few nanoseconds that
may time spend to execution comparing with program1. By
give it condition (n<1000) ++n and it approximately take 0.1
seconds (1000, 000,000 nanoseconds) or 1000
milliseconds. In program 2 the result of execution time as
approximate take 0 seconds.

4 COMPILE TIME EXECUTION
According to sources, that the identification of compilation it
is like just in time compilation (JIT), it a method to measure
and improve the runtime performance of computer
programs based on byte code. When byte code is
interpreted, it executes slower than compiled machine
code, that could be performed before the execution and
which during the program loading and also during the
execution make it slow. Compile time execution in some
programs, execute before rune time execution. Some
programs do not need and others need as instance for
replacement done in compile time execution in #define
which is the preprocessor directive substitute's statement in
C++ programming, like in the program below:

4.1 PROGRAM 1
#INCLUDE <IOSTREAM.H>
#DEFINE X1 B + C
#DEFINE X2 X1 + X1
#DEFINE X3 X2 * C + X1 – D
#DEFINE X4 2 * X1 + 3 * X2 + 4 * X3
MAIN ()
{INT B = 2; // DECLARES AND INITIALIZES FOUR VARIABLES.
INT C = 3;
INT D = 4;
INT E = X4;
// PRINTS THE VALUES.
COUT << E << “, “ << X1 << “, “ << X2;
COUT << “, “ << X3 << “, “ << X4 << “\N”;
RETURN 0;

In the above program there are four replacements for
preprocessor directives. It is executed before C++
compiling. Sometimes execution of preprocessor directive
(#define) will cause somewhat slowing before execute C++
script in extra nanoseconds because it is compile to source
code.

4.2 Script 2
int factorial (int n) {if (n == 0)
return 1;
return n * factorial(n - 1);}
// computed at compile time
const int y = factorial(0); // == 1
const int x = factorial(4); // == 24
In script2 of factorial function there is a comment before if
(n == 0)
return 1; return n * factorial (n - 1);}.

Also this statement compiled at compile time execution that
could delay execution of whole program some millisecond
or some nanoseconds. Also this statement compiled at
compile time execution that could delay execution of whole

program some millisecond or some nanoseconds.

5 DISCUSSION
David B. Stewart, 2006, in his overview of measurement
techniques of execution time explains that there are many
different methods exist to measure execution time, but there
is no single best technique. He mentioned that each
technique is a compromise between multiple attributes, like
resolution, accuracy and granularity [5]. The resolution first
which is a representation of the some limitations of the
timing that concern hardware. The example as Stewart a
stop watch measures with a 0.01 sec resolution, while a
logic analyzer may be measured with a resolution of 50
nanoseconds. That it which conduct us for different
nanoseconds of some programs. Off course thereupon the
algorithm (short or long way) that could execute the
programs and its statements. Then it come the accuracy
which is give method of measuring, as compared to the
actual time if a perfect measurement that obtained through
execution of the program. If a particular measurement is
repeated several times, there is usually some amount of
error in the measurements that is explains also as findings
of this research that for instance loop statement for or while
condition. The last technique is the granularity, it is the part
of the compiling code that can be measured and it is
specified in which David B Stewart called it a subjective
manner.

6 CONCLUSION
C++ program execution different from program to another
based on the statements, commands and compiling time
taking and the statements that execute at compile time as
well as running time. According to Professor Roberto
Cipolla, that there are three phases of program go through
development are editing, compiling and running the
program and checking for logical errors (could call it
debugging). There are short ways and the algorithm of the
program may reveal through programming and
development to get short time results with the same
precision could be in the same programs aim. Millisecond
or nanoseconds different in the speed could be between
two programs with non-same statements. Loop (for)
statements or big condition while statement as example are
could also take more milliseconds than usual a + b +c or
a*b/c direct, which take a little nanoseconds of execution
speed. Compile time in development which is compiling to
source code take a little time before compiling of C++
program. Some commands in C++ programming like
(#define) and (#include) preprocessor in the beginning of
C++ programming body, is must compile before C++
program compile or rune time.

7 ACKNOWLEDGMENT
Thank to everyone help me and was helpful to finish this
simple article. I hope that this article is very good beginning
for me to go through scientific work. I hope to do more
researches in IT and CS scope.

http://www.embedded.com/encyclopedia/defineterm.jhtml?term=resolution&x=&y=

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 5 137
ISSN 2347-4289

Copyright © 2014 IJTEEE.

8 REFERENCES
[1]. Ugur Halıcı, operating Systems, processing

scheduling, 2007. Website:
eee.metu.edu.tr/~halici/courses/442/Ch2%20Process%
20Scheduling.pdf

[2]. Roberto Cipolla, Editing, Compiling and Executing a

Simple Program, 2004. Website:
eng.cam.ac.uk/help/languages/C++/C++_tutorial/editing.
html

[3]. Prashant, Compiling and Linking in C++, 2013.

cplusplus.com/articles/2v07M4Gy/

[4]. Howard Hinnant, Beman Dawes, Vicente J. Botet
Escriba, Boost C++ libraries,2008-2009.
boost.org/doc/libs/1_47_0/doc/html/chrono/users_guide.
html

[5]. David B. Stewart, Measuring Execution Time and Real-

time Performance, 2006. drdobbs.com/embedded-
systems/measuring-execution-time-and-real-time-
p/193502123

