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ABSTRACT: In this paper, a food web model involving prey-predator system with stage structure in the second level is proposed and studied. The
existence, uniqueness and boundedness of the solution of the system are studied. The existence conditions of all possible equilibrium points are
determine. The local stability analyses and the regions of global stability of each equilibrium point are investigated. Finally further investigations for the
global dynamics of the proposed system are carried out with the help of numerical simulations.
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1. Introduction

It is well known that in nature most of the species have two
stages, the first is immature and the second stage of
mature. Furthermore each species has the ability to interact
with any other species in the environment; these
interactions differ according to the stage of every species. It
is worth to note that, over the last several decades there
has been a considerable interest in the study of population
dynamics with stage structure. In addition, in each
environment there is always a predator residing at the top
of a food chain, this type of predator is called top predator
or super predator that is meaning that top predator species
occupy the highest food level or levels and plays a crucial
role in maintaining the health of their ecosystems, see for
example [1-4] and the references therein. Most of these
studies were focused on prey-predator interactions
involving a stage structured predator. Kunal and Milon [5]
studied the effect of harvest and bifurcation of a prey—
predator model with stage structure. Xiangyun, Jingan and
Xueyong [6], proposed and analyzed eco-epidemic model
with a stage structure. Tarpon and Charugopal [7] studied a
prey-predator model with stage structure for prey. Chen and
You [8] studied the permanence, extinction and periodic
solution of the periodic predator—prey system with
Beddington—DeAngelis functional response and stage
structure for prey. They obtained a set of sufficient and
necessary conditions which guarantee the permanent of the
system. In the last decade, simple multi-species systems
comprising of three trophic level food chain were discussed
by number of researchers [9-15]. On the other hand, chaos
in three species food chain system with classical Lotka—
Volterra type interactions and Holling type Il functional
response was also demonstrated. Hsu et al. [16] studied
the three trophic level food chain with ratio-dependent
Mechaelis—Menten type of functional response and its
applications to biological control. Gakkhar and Naji [17]
investigated a three species ratio-dependent food chain. In
this paper, however, we will propose and analyze a food
web ecosystem involving two competing prey species at the
first level; stage structure intermediate predator at the
second level, which consumes the prey species at the first
level according to Holling type-ll functional response; top
predator at the third level that preys upon the two
competing preys at the first level and the immature predator
at the second level while its competes the mature predator
at the second level. The local as well as global stability

analysis of the modified model is investigated analytically
as well as numerically.

2. Model formulation

In this section an ecological system consisting of four

species involving stage structure is mathematically

formulated and analyzed. It is assumed that these four
species are distributed in three levels so that in the first
level there are two competing prey species, which are
denoted to their population’s sizes at time t by Nq(t) and

N, (t) respectively. In the second level there is a stage

structure predator species in which N3(t) denotes to the

population size of immature individuals at time t, while

N4(t) denotes to the population size of mature individuals

at time t. However, in the third level there is a top predator

that denotes to their population size at time t by Ng(t).

Finally in order to formulate this system mathematically, the

following assumptions are adopted.

1. Inthe absence of predation, the two competing preys at
the first level grow logistically with an intrinsic growth
rates r>0,s>0 and carrying capacities K>0,L>0
for Ny(t) and Ny(t) respectively. However, they are
competing each other with intensity of competition rates
a; >0 and a, >0 respectively.

2. In case of existence of the predator in the second level
it is assumed that the predator is divided into two
compartments namely immature predator N3(t) and
mature predator Ng4(t). The mature predator
consumes the first and second preys according to
Lotka-Volterra type of functional response with
maximum attack rates b >0 and b, >0, then the food
is up taken by the predator with uptake rates 0<e; <1
and O<ey <1 respectively. Moreover, the immature
predator can’t attack any of the preys, rather than that it
depends completely on his parents, so that it feeds on
the portion of up taken food by mature predator from
the first and second preys with portion rates O<n<1
and O0<m<1 respectively. Finally it is assumed that
the immature predator is grown up to be mature with
grown up rate >0.
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3. When the top predator exists in the third level, it is
assumed that the top predator consumes both the
preys in the first level according to Lotka-Volterra type
of the functional response with maximum attack rates
¢, >0 and c, >0 for Nyi(t) and Ny(t) respectively,
while it attacks the immature predator at the second
level with maximum attack rate g >0. Further, it is
assumed that there is enter-specific competition
between the mature predator and top predator with
intensity of competition rates ;>0 and y,>0
respectively. Finally both the predators (mature
predator and top predator) are decay exponentially with
natural death rates d; >0 and d, >0 respectively in

the absence of their food.

According to these assumptions the dynamics of the above
described food web system can be formulated
mathematically with the following set of differential
equations:

dN, N,
—L =Ny 1-—2|-a;N;Ny —byN;Ny4 —c;N4N
dT 1[ Kj 10N1IN 2 11N11N 4 1'N11N5

dN, N,

—==5Ny|1-—=|-a,N{N, —b,N,N, —c5N,N

a7 2[ L] 21N11N2 21N2N4 2'¥2N5

dN,

d—T:nelblNlN4+m92b2N2N4—0!N3—ﬂN3N5

dN,

d—TzaN3+(1—n)elblNlN4 +(1—m)ezb2N2N4 ......... (1)

—71Ng4Ns —d;Ny
dNg
d—T=93°1N1N5 +€4CoNy N5 +e5N3N5 — 7o NyNg
—dyN;

Here N;(0)>0, N,(0)>0, N3(0)>0, N40)=0 and
N5(0) > 0. Note that the above model contains 23 positive

parameters in all, which makes the analysis of the system
very difficult. So, in order to reduce the number of
parameters and determine which parameters represent the
control parameters, the following dimensionless variables
are used.

a
t:rT, Xl:—l, X2:—1N2,X3:_N3,
r
by S r
Xg =—Ny, Xg =—Ng, U =—,Uy =—,
4 41 Xs 50 th =1l a,l
Ka, b, c peK
3= T 4:b_v u5:_7 u6: ’
r 1 c; r
£hye, a B ab
uz » Ug=—,Ug =", Ujg=—7~,
by r C; rg
_ Khe _ 6 N _d
Upg = y Upp=——, U3 =", Uy =—,
a; c; r
¢ Keg C284 72 d,
15 = y g =—» l7:b_’ Ug=—
1 1 r

Accordingly, the dimensionless of system (1) becomes

dx
d_tl =X (1=X1) = XX = X1Xg = X1 X5 = f;(X)
dx,
o UpXp (1—UpXp) —UgXyXp —UgXpXy —UsXpXs
= f2(X)
OX5 _ fiigXyX,q + MliyXgXy — ligXe = UgXgX = f,5(X)
m 6X1%4 7XaXg —UgXg —UgXaXs = T3(X) @)
dx

4
o loXs t (1= n)ugaXi Xy + (L —M)usaXaXg

—UpgXgXs —UygXy = F4(X)
d

X5
ot = Up5X1 X5 + U6Xp X5 + €5X3X5 — Uy 7X4 X5 —UpgXg

= f5(X)

Here X=(x1,x2,x3,x4,x5)T, X1(0)>0, X2(0)>0,
X3(0) 20, %4(0)=0 and x5(0) >0. Clearly, the interaction
functions fy, fy, f3, f4 and fg of system (2) are continuous
and have continuous partial derivatives on the state space

R> ={X e R®: x;(0) = 0,x,(0) >0,
X3(0) = 0, x4(0) > 0, x5(0) > 0}.

Hence these functions are Lipschizian on Rf and then the

solution of the system (2) with nonnegative initial condition
exists and is a unique. Further, all the solutions of system

(2) which initiate in Rf are uniformly bounded as shown in
the following theorem.

Theorem (1): All the solutions of system (2), which initiate
in R, are uniformly bounded.

Proof: From the first equation of system (2) we get:

dx,
— < 1—
at X (1-X%q)

Then according to the comparison theorem [18], the above
differential inequality gives that

lim supxq(t) <1, hence x(t)<1; Vt>0
t—owo

Similarly, from the second equation of system (2) we obtain
that

lim supxs (t) si ,hence x, (t) si ; V>0
t—o0 uz uz

Now define the function
M (t) = xq (t) + X2 (t) + X3(t) + X4 (t) + x5(t) and then take the
time derivative of M(t) along the solution of system (2)
gives:

dm dM

—<H-6M = —+M <H
dt dt
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Where 6 = min{l,ul,y1u14,u18} , H= 2X1 + 2U1X2 with
¥ =Ug —Uqg. Now, it is easy to verify that the solution of
the above linear differential inequalities can be written

M (t) < %+[MO —%je‘”
Where MO = (Xl(O), X2 (O), X3(O), X4 (0), X5(O)) ,So that

IimsupM(t)g% = M(t)s%;VbO.

t—ow

Thus all solutions are uniformly bounded and the proof is

complete.
|

3. Existence of equilibrium points

UoUig <Ujg (Sb)

Moreover, the first three species equilibrium point
Eg = (X1,0,X3,%4,0) Where

x|

UgU - NUg=, =
= 814 rX3:_6X1(1—X1)
NUgUy o + (1—N)ugliyg Ug (6a)

exists if the following condition holds
Uguqg< nu6u10+(1— n)ugull (Gb)

The second three species equilibrium point
E7 = (0, 22,§3,24,0) where

It is observed that, system (2) has at most eleven - Ugly 4
. . ; L ; %, = ,
blo.l.oglcally feasible _ equ|l|br|un_1_ points, namely 2 MU U o +(1— M)UgUy,
E;j;i=012,...10. The existence conditions for each of these —
equilibrium points are derived in the following. The X3 = ﬁiz (1-uyXy), (7a)
vanishing equilibrium point Eg =(0,0,0,0,0) and the axial 872
~ u ~
equiibrium points £, =(10.000) and E; = (0.L.000) Xy = u—l(l— U Xp)
2
always exist. The first two species equilibrium point
Ez = (X1,X2,0,0,0), where exists under the condition
_ UoUgUi4 < MuU7U10+(L—m)ugu (7b)
. _w@ u2)’ %y =1-% 33) 2UgU14 7U10+(1—m)ugupo
uz —Upuz
The third three species equilibrium point
exists under one set of the following sets of conditions Eg = (X1,X»,0,0,X5) , where
Ug >U; & Uy <1 3b =z
som e (30) ;l _ Uig —UieXs
Or Uis
;2 __(ug —Us)ug +(Us —Uy)uss , (8a)
U3 <Up& Up>1 (3c) (U3 —Us)Uye + (Us —UyUp)Uss
. - _ X5 =1-X —X;
The second two species equilibrium point
E4 = ()21,0,0,0, )25) , with
exists if the following condition holds
%= 18 and %5 =1- %, (4a)
Us ~ _(Us—Us)ug+(Us —Up)ys _ Uss—Ung (8b)

exists under the condition

The third two species equilibrium point Eg = (0,X5,0,0,X5) ,
where

u - _u
X5 = —L(1-UyXy) and X, =—8 (5a)
Us U16

exists under the condition

(uz —Us)ugg +(Us —UUp)lys  Ups—Ugg

The top predator free equilibrium point
Eg = ():<1, >:<2,>:<3,>:<4,0) ,which is given by
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7= UgUy4(Ug —UgUp) — (Ug —Up)Qy
(ug —UgUp)Qp + (U3 —Uy)Q,

Ug — Uy + (U3 —Ug)X

X((

, =
(ug —uguy) (9a)
Z 1 z Z z Z
X3 = —[NUgX; X4 + MU7X5X4],
Ug
S Up—Ugp —(Ug —UpUy) %y
Xy =

Uy —UgU,

Here Ql =NUgUyg + (1* n)U8U11, QZ = MuUzUjg + (l* m)U8U12 . This
point exists uniquely in the Int.Ri1 of (X1,X,X3,X4) — Space
provided that one set of the following conditions hold

UUy <Uy < Uz U3z <Ug <UUy

Uy —u - Uy —uu up —uqu S U —Ug | +evees 9b
1 4 <% < 1~ Y142 1 142 <% < 1 4 ( )
Uz —Uy Uz —UUs Uz —UjUy Uz —Uy

>0 y<0

with y = ugliy4(ug —Uup) — (Ug —U)Qz .

Finally the positive equilibrium point E;q = (X],X;,X3,X;,Xs)
of system (2) can be written as:-

* 1 * *
X1 = ——[Ry —R3Xg —Ryxs],
R2
* 1 * *
]X2 :R—[Ll +L2X4 +L3X5], (lOa)
2
* XZ * *
X3 = [L4X5 +L5X4 + L6
U1oR,

herely =u; —uz, L, =uz—Uu,, Lg=uz—uUs

R1=U1U2—U1,R2 =Uz —Usg, R3=U1U2—U4 and
R4 =uwus —ug. While (xZ,xg) represents the unique
intersection point in the interior of the positive quadrant of
X4 X5 - plane for the following two isoclines

f(Xg,X5) = (X5 +TpXg + [3XsXg + [4Xg + Is

i A (10b)
9(X4,X5) = S1X4X5 +(Sz —S3X4)X4X5 +54X] +S5Xg
Where

Lce UqgL Lge U;sR
po_ 5% . _Uelz Lees UsRs
UgU17R2 UizR2  Ugoui7Ry  U7Ry

oo tsba _ Uiela—UssRy
Uygu17R2 up7Ry
UisR Uig L u —UgL,
- dish | Uiels Uig 5 “Uols
ui7Ry 7Ry U7 upoR2

UglL R ugL L
03 = 95 ,54——{nu6—3+—8 5 _mu —2}

7
uRo Ry uppR2 Ry
55 = nu6&+mu7i_ﬁ
Ry Ry upR

Straightforward computation shows that E;y exists
uniquely in the Int. Rf provided that the following set of

conditions hold For the positivety of xf,xz and x§ we
should have:

max{ug,Us}<Uz <Up;Up >La>0; 5>0,0>0
OoOR b (10c)
Up <ug <minfug,us};up <L a<0; f<0,p<0

However for getting unique positive intersection point
(x3,x) we should have:

UigRo > U1sRy +Uigly 5 Uigls > UsRy (10d)
r3x4 + r4 <0
OR (10e)

2r1x4 +1I7 +I3X5 < 0

281X X5 + (01 —O3X4)X4 >0
D o (10f)
01X + (0 — 93X4) X5 — O3X4Xs5 +204%X4 + 55 >0

Where a = U13R2 + (1— n)u11R4 - (1— m)u12 L3 s
B =1=-n)uy Rz —(L-muply
@ =UaRy —(1-n)ugRy —(L-m)ugoly .

4. The stability analysis

In this section, the local stability of the equilibrium points of
system (2) is investigated using the linearization method. It
is easy to verify that the Jacobian matrix of system (2), at
the general point (x1,X2,X3,X4,X5) , can be written as

J =(djj)sxs; 1,j=12,-5 (11)

Where

dig ==X +[L— X —Xp — X4 —X5], dgp =—Xq, d13=0,

diq =dj5 =—X1,dp1 =-U3Xz,

doy = —Ugupxy +[up(L—UoXo) —UgXy —UgXg —UsXg], dp3 =0,
dpg =—UgXp, dp5 =—UsXp, d31 =NUgXs, U3zp =NU7X4,

d33 =—Ug

d3gq = NugXy +MuyXy, d3s =—UgX3,

dg1 =@ —n)up1Xg, dgp = (1-m)uppXy,
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dgz=uo dgs=—U13xg d5g4=-U17%s

dag = (L—Nuggxg + (L —m)upoXp —U13Xs — g,
dsg =UjsXs , dsp =U1gXs, d53 =e€5X5,

dss = U15%q +U1eXp +€5X3 —Uj7Xg —Upg

Therefore, the Jacobian matrix of system (2) at the
vanishing equilibrium point E; is:

0 0 0 0

u 0 0 0

0 —-ug O 0 [e (12)
0 up -ug O

0 0 0 -ug

J(Eg) =

O O O O =

Thus the eigenvalues of J(Eg) are:

/1)(1 =1>0, /1X2 ZU1>0, /1)(3 =—U8<0, /1X4 I—U14<0,

)“XS =—U1g <0.

Therefore Eg is unstable saddle point. The Jacobian matrix
of system (2) at E; is written by

-1 -1 0 -1 -1
0 u; —us 0 0 0
J(E1)=| 0 0 -ug Nug 0 | s (13a)
0 0 Uipo (1—n)u11—u14 0
0 0 0 0 Ujs—Usg

Accordingly the characteristic equation of J(E;) can be
written as

(—1—/1)[(Ul —U3) —ﬂ][(u15 —U18) —ﬂ]lﬂz + Blﬂ.+ BZ J= 0 e (13b)

where By = —[(1-n)uyy —ug4 —ug] and

By =ugliyg — ((1—n)ugqug +Nuglg) -
So either
(-1-A)[(wg —ug) — (s —uyg) - 2] =0

Which give the eigenvalues of J(E;) inthe xq,x; and Xg
direction respectively as

Ax, =—1, Ax, =3 —U3, Ay, =Uj5—Ug (13c)
or
A2 +BA+By =0

Which gives the other two eigenvalues of J(E;) in the x3
and x4 direction as

i% B — 4B, (13d)

Therefore, all the above eigenvalues have negative real
parts if the following conditions hold

U; <Ug
Ups < Ug (13e)
(1-n)uyyUg +NUgU1o < UgUy4

So, E; is locally asymptotically stable in Rf . However, it is
saddle point otherwise.

The Jacobian matrix of system (2) at E, is given by

1-L 0o o 0 0
uz
u3 ug ug
IR ) )
u
J(Ey)=| 0 0 -ug mé 0 | . (14a)

0 0 u Lmuz_,, 0

uz
0 0 0 0 A6y g

u2

Therefore the characteristic equation is

Hl—i]—/l} [-u —A]Hﬁ—uw] —/1} [/12 + A+ A2]= 0 evess (14b)

uz uz

Here A = —[% —Uygy — ug} and

(1-m)uguy+muzugg
uz

i

Which give the eigenvalues of J(E,) inthe xq,x, and xg
direction respectively as

Ay =Ugly —( ) . So, either

1 U1 —UpUsg
Ay, =1——, Ay, =—Up, Ay, =——55=5 ... 14c
X1 Up X2 1+ Mxg Up ( )
or
P4 MA+A =0

Which gives the other two eigenvalues of J(E,) inthe X3
and x4 direction as

al i% AL —4Ay (14d)
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Straightforward computation shows that all the eigenvalues
of J(E,) have negative real parts if the following conditions

hold:

u, <1
Upg <UpUsg (14e)
(1—m)uguy, + muyuyg

uz

<Ugls

Hence E, is locally asymptotically stable. However, it is a

saddle point otherwise. The Jacobian matrix of system (2)
at E3 can be written as

7)?1 7)?1 0 —X1 —X1
- U3)72 - uluziz 0 - U4i4 - U5)72
J(E3) = 0 0 —ug nu6i1_+ muzXy 0 (15a)
0 0 uzo das 0 |
0 0 0 0 dss

= (djj)
Here

a44 = (1=n)uy Xy +(L—m)ugX; —Ugy,

dss = UgsXy +U3eX, —Ugg

Then the characteristic equation of J(E3) is given by

lﬂ? +_A1/T+Z\2Jl/? +§1Z+§2J[(u15i1 +U X2 —Upg) —Z]: 0.....(15b)
where

AL=% +UUpXy, and A2 = (UUy —Ug)%X, >0 under the
second condition of the existence of E3. While

B1 =—[(1-n)uy1 %y +(L—mM)upoXp — s —Ug],

B2 =Uglhg — 71X — 72X
with 71 = (1— n)ugull +NUgU1g, Y2 = (l— m)u8u12 + MuzUqg -

Therefore the eigenvalues can be written as:

I e S N Y

X117V Xo 2

g1 o :_781_1\/612 —4B; (15¢)

X4

N

N

Ay = UpsXy +UpeXy —Ugg

Accordingly, it is easy to verify that all these eigenvalues
have negative real parts if the following conditions are
satisfied

UpsXq +UggXp < Uyg
y1X1 + 72Xy <Uglyy (15d)
(L=nuysX; + (1 —mM)upoX, <Ug +Upy

Hence, Ej is locally asymptotically stable. However, it is a
saddle point otherwise.

The Jacobian matrix of system (2) at E, can be written as

- %4 -% 0 % %
0 dy, 0 0 0
J(Ey) = 0 0 —ug ungXy 0
0 0 U Ay o |--(16)
U5 —Ujg UeXs €sXs —UjgXs 0

= (dj)
Hered,; =U; —Ug%; —UsXs dgq = (1-N)upg X3 —U13Xs5 — U4

The characteristic equation of J(E4) is given by

(dop D) |12+ Ai+ Ay |72 +8,448,]=0 (16b)

Where  A=%  and  Ay=(uj5—Ug)%,  Wwhile
él =Ug +Ujg + U13)25 — (1— n)ull)?l and
B, = Uglp4 + Uglj3%s — [(1— N)ugliyy +Nuglpl%y.  Therefore

the eigenvalues are:

Ay, =Up —Ug%y —UsXg
s s - Al 177 =
Axgidxg = £ 5V AL — 4Ry (16c)

Fagrhng =L+ 167 48,
3 4 2 2

Hence, all these eigenvalues have negative real parts if the
following conditions are satisfied

Uy < UgXq + UsXs
[(1—n)uguy; +NUgUyg]X; < UgUy4 +UgUiy3Xs

} (16d)

Thus, E4 is locally asymptotically sable in the Rf,
however, it is a saddle point otherwise.

The Jacobian matrix of system (2) at E5 can be written as

1-%) — X5 0 0 0 0
- U3)?2 - U]_Uz)u(z 0 - U4)?2 - u5>?2
J(Es) = 0 0 —Ug m£17>“<2 (172)
0 0 Uio d44 0 e
Uy 5X5 UeXs esXs —Up7Xs 0
= (dy)
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Here dgq =(1—m)upXo —U13X5 —Ug4. SO the characteristic
equation of J(Eg) is given by:

ldy - )32 + Ai+ A, |2 4B 4B, )=0 (17b)

Where )Eg_ = UlUZ)V(Z and AZ = U5U16X2X5, while
By =Ug +Uyq +U13X5 —(1-m)usa Xz,

B, =Ugly4 +Ugly3Xs —[(1—m)uglys +mu7upg]Xy . Thus the
eigenvalues of J(Eg) can be written as:

jxlzl—)i(z—)i(S

v A 1 [= -

Ay Aoy TAliE A? —4A, (17c)
- -B, L

Aagr Ay = T > B2 — 4B,

Now straightforward computation shows that all the
eigenvalues of J(Es) have negative real parts provided

that the following conditions are satisfied
1<X, + X5

} (17d)

[(1—m)uguyy +muqug o)X, < Ugliyy + Ugly3Xs

Hence Eg is locally asymptotically stable in the Rf

however it is a saddle point otherwise. The Jacobian matrix
of system (2) at Eg can be written as

-% -% 0 -% -X
0 dys 0 0 0
J (EG) = nu6§4 mu7§4 —Ug nu5§1 - U9§3
= = = = (183)
I-mMupsXg (@-moXs U dag  —sXy
0 0 0 o dss

Here
dpp = Uy —UgXy —UgXg,dgq = (1-N)Up1Xs —Up4

CT55 = Uy5%) +€5X3 — U 7%4 — Urg -

Hence the characteristic equation of J(Eg) is given by
(dpp — 2 )(dgs — 2 )[A3 + ALZ2 + A2 + A3] =0......(18b)
Where

=—(dys +633 +d4g); A2 =dpydgs+R1+R;

J>|I Z

= —[d11R2 +d14R3]

With

R1=d;1d44 —d14049;R2 =d33d 4 —d34dy3;

A = R]_RZ —R3 = Z1(511533 +§1) — (533 + 644)52 + 514§3

So the eigenvalues in the X, and Xg -directions are given
by

/sz = Uy —Ug%y —UgXy; (180)

i

s = U1sXy +€5X3 —Uy7Xg —Upg

However the other three eigenvalues represent the roots of
the third order polynomial in Eq. (18b), which have negative

real parts if and only if z1>0, z3>0 and A>0. So
straightforward computation shows that all the eigenvalues
of J(Eg) have negative real parts if the following conditions

are satisfied:
Up < UgXy +UgX,
UpsXq +€5Xg < Up7X4 +Uyg

X1 <mi tia UgUs4 } .....(18d)
(I-n)uy; (A—n)uguyy +nNuglyg

il(d=11‘?33 + El) - (‘733 + 544)32 > (71433

So, Eg is locally asymptotically stable, however, it is saddle
point otherwise. The Jacobian matrix of system (2) at E;
can be written as

1-%p-%4 0 0 0 0
- Ugiz - U1U2§2 0 - U4§2 - U5)~(‘2
‘](E7) = nU6§4 mU7i4 —Uug mU7§(‘2 —Ug)?s
% 3 R (19a)
(I-n)upixg (L-mupxg  Ugg —U13Xg
0 0 0 0 dss

= (aij)
Here

dgq =(L—m)U;pX; —Uyy ds5 =UigXy +€5X3 —Uy7Xs —Ugg.

The characteristic equation of J(E7) is written as:

(dyy — A)(dgs — A)[A° + AA° + Agd + Ag]=0......(19b)

Where

A1 (d22+d33+d44) Az—d22d33+R1+R2:
=—[d22R2 +d24R3]

Ry = dpp044 —dp4l4p; Ry = dggdyy — dagdys;

Rg = dap0 5 — d3aday
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While
A=Ak — Ag = Afdyodaz+Ry]—(d33+ds4)Ro+d24R3

Therefore the eigenvalues in the x; and xg-directions are
given by

Ay =1-%, %,

- o _ (19c¢)

Ayg = UgeXa +€5X3 —U17Xg —Uyg

However the other three eigenvalues represent the roots of
the third order polynomial in Eq. (19b), which have negative

real parts if and only if ;’:\1>0, K3>O and A>0. So

straightforward computation shows that all the eigenvalues
of J(E7) have negative real parts if the following conditions

are satisfied:
1< X, +X,4
UpgXy +E5Xg < Uy7X4 +Ugg
Upy UgUygy | eeeees (19d)
(L-m)ug, " (1—m)ugly, +Muqlyg

52453 < '&1[522533 + ﬁl] - (533 + 544)§2

X, < mi

So, Ey is locally asymptotically stable, however, it is saddle
point otherwise. Now, since the stability analysis of the
remaining equilibrium points of system (2), using
linearization method, became more complicated, therefore
we will study them with the help of Lyapunov method. In the
following we will start first to specify the region of global
stability of the equilibrium points E;;i =12,---,7 .

Theorem (2): Assume that E; is locally asymptotically

stable in Rf and the following conditions hold

M(L - n)esusuUy; + (1 —m)usuy,(Ugly 5 — NUgES)

..... (20a)
< (1= n)uyUgeUglyy
UgUygUs < (L—n)esuglyq + NesUglyg (20b)
NesUgU14 + (1—N)Ugly1Uss < UglhgUss (20c)
(%, ~1)? (20d)
4n,
ujuou
Where 7 =285 W6 5y 5, = 192M6  hep the
UsU15 UsUps +UjUig

equilibrium point E; is globally asymptotically stable.
Proof: Consider the following function

Ly (X, X9....X5) = (X —1=1InX;) + Xy + I3X3

+ 14Xy + I5Xs5
Here r;i=12,---5 are positive constants to be determined.
It is easy to see that

L (X1, Xp...X5) € CY(R3,R), in addition L4(1,0,0,0,0) =0, while

L1 (X1, %2...X5) >0, Y(Xq,...X5) € Rf and
(Xq,...Xg) = (1,0,0,0,0) . Further more by taking the derivative

with respect to the time and simplifying the resulting terms,
we get that

dd—Ltl =-1(X ~1)% - (1 + rU3) X Xo + (I + FpUp )Xo
— NUU, X35 — [ — r3nUg — 1y (1= Nuy1]x;X,
—[rpuy — r3muz — 1y (1—m)ugp ]z X4
= (raUs — '5U16) X X5 — (F3Ug — aU1) X3
= (r3Ug—T5€5)X3Xs5 — (U4 — 1) X4
= (raUy3 + I5Uy7)Xg X5 — (I — T5U15) X1 X5 — F5U1gX5

Now by choosing the positive constants f;i=12,---5 as
follows

u e
I’l :1, I‘2 = 16 y I’3 = 5 y
UsUy 5 UgUs5
UgUy5 — NUgEs 1

4=  I5 =
(L-n)uguyus5 Uss

and then substituting them in the above equation , we get

dL. 2 ugu
=L o (xg -2 | 1418 o g xp [L- 2 X ]
dt UsU1g

u13(ugUs —nesu u
_| Y13(uguss —nesug)  u17 X4 X5 —UsliyaXs
(A-nuguyguys  Ugs
| (d=n)uy; (ugugly g —MesUisu7 )—(1-m)uyp (Uglh 5 —NUges )Us
(1-n)usUgly 1th 5

}X2X4

_| Esus _ Uio(uguys —NugUs) |
UgU1s (1-n)uguyyuss
Ug4(UgUys —nesug) 1

- =2 2 0 1y

(1-n)uguyyuys

Now, due to the boundedness of the logistic term
mXo[l—mox,] by the m/4nm,, then its easy to verify that

(o] : - - .
d_tl is negative definite under the sufficient conditions

(20a)-(20d). Hence the solution of system (2) will approach
asymptotically to E; from any initial point satisfies the

above condition and then the proof is complete.
|

Theorem(3):Assume that E, = (0, >:<2,0,0,0) ;

>:<2 :iislocally asymptotically stable in Rf then it is a
uz
globally asymptotically stable provided that the following

m(l— n)‘95Usu7ull + (1— m)u5u12(u9u15 - nuee5)
< U4U16(1— n)ugun
UglhoUys < (L—N)esUigliy1 +NestigUg (21b)
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NesUsUgU14 + (L—N)uglgUy1UigXp < UsUiglialis (21c)
Ulﬁ):(z <U18 (21d)

Ujuou

B _ Uilalie (21e)
45,  Uguss
Here
UsgUjs +UgUig iz UsUss
Py =—215T36%2 ang g, = 515
UsU15 UsU15 +U3U16X7

Proof: Consider the following functions

= s X
Lo (Xq, Xg sy X5)=C1Xq +c2[x2 — %X — %, In):(—ZJ
2

+C3X3 +CygXyg +C5Xg

Where c¢j,i =1,....5 are positive constants to be determined.

L2(0,>:(2,0,0,0):0 while  Ly(xq,....x5)> 0; ¥(xg,....X5) € RY

and (xl,...,><5)¢(0,>:<2,0,0,0). Further more by taking the

derivative with respect to the time and simplifying the
resulting terms, we get that

dditz =cxy(l-%)- Czuluz(xz - %, )2 —CaU14Xy
(&g + cauz Xy xp —[eg — canuig — e (L —nugg [y,
—(c1 —csuizs)xaXs — (c3Ug — Cses )XaXs
—(CaUig — C4Uy0)Xg + CoU3X1 X,
—[eus —camuy — 4 (L-muspJxox,
— (U5 — C5lizg ]XpXs +ColgXp Xy +CoUUsXpXs

— (Cqlys + Csliy7 )X4 X5 — CsliygXs
So by choosing the constants Cj,i =1,2,....5as follow

u e
=1 cp=—2E =7

) 3 = )
UsUis UgUys
UgU;5 — NesUg 1

o (1—n)u9u11u15 ne Uis

Thus by substituting these constants in the above equation,
we get that

di,
dt

_ _U5U14(U9U15 — NegUg ) — UgUgUy Uy 6(1— n)>:(2 }X4
(L—n)usUgly 1y

_ (1*”)U11(U4U9U16*m’55U5U7)*(1*m)U12(U9U15*n95U6)U5]X X
L (1-n)usuguy 1uss 274

B _(1— N JesUgly 3 — Uso(UgUss — NesU )}Xa

(1—n)uguy 1uys

_ {%3(“9“15 — nesU) + Uﬁ}
(L—nuguy Uy Uis

UsU Upg — UjaX
_[1+ 3 16}(1)(2 | U1g —Ug16X2 Xs
UsUis Uis

Now, due to the boundedness of the logistic term
Pixq[l- Boxq] by the pB/4p,, then its easy to verify that

dstz is negative definite under the sufficient conditions
(21a)-(21e). Hence the solution of system (2) will approach
asymptotically to E, from any initial point satisfies the
above condition and then the proof is complete.

| |

= Pixafl- Byxg |- 228 (x, - %,
UsUss

Theorem (4): Assume that Egz is locally asymptotically

stable in Rf. Then, it is a globally asymptotically stable
provided that the following conditions hold.

mM(L—n)esusuzUs g + (L —M)usUgUyolss
< (L=n)ugugUy iUy + n(L—m)esusugu;

)+ (1— n>J9U11U15X1 + (1_ n)u4u6u9u11X2 w (22b)

(nusU < Uglly5< Nesllg +
Uy Upg
U15)_(1 + UlG)_(z <Ug (220)
usu 2 UqUsUqsU
s + 3416 <4 1Y2Y15Y16 (22d)
Us Us

Proof: Consider the following functions

— _ _ X
1

_ S 'R P _
+cz(x2—x2—len)_(—1]+c3x3+c4x4+05x5
2

Where €j,i =1,....5 are positive constants to be determined.

L3(%,%2,000)=0  while  Lz(xq,....x5)>0  for all

(X1,....x5)€R> and (xq,...x5)#(%,%»,000). Moreover by

taking the derivative with respect to the time and simplifying
the resulting terms, we get that
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ddits =Ty (x — X )* = (G + Coug )}y — Xy )X, = X;)
— oty (X; — X, )° = [Colls — Coliy IXoXs
—[c1 — Canug — T4 (L= N)uyy Jx x4
—[eous —Egmu; — 4 (L —m)ug, Jxpx,
- (Eaus - 54“10)X3 - [53U9 - 5595]X3X5
—[C4u15 + Tty xg x5 —[E1 —Csuys X X
~[Csurg — &%y —Tous%, x5
—[Eaurs — €% — Tous %, Jxg

So by choosing the positive constants as below

= = _We - _6
G =Uss, Cz=u o Ca=
5 9
(1-n)uguy;

and then substituting these constants in the above
equation, we get that

dL _ u,u,u _
d—taz—uls(xl —X1)2 —%516( 2~ )2

n uy (UUgUyg —Mesuistz ) (_m)USUIZ(UQUIS_ne&UG)]X X
(1-n)usugurg 274

_[an
It
(1-n)esuguy — U10(“9U15—”65U6)X

(1- n)U9U11 :

[U5U14 (ugty5—nesug )-(1- n)U9Un(U&3Uis><1+u4uls><z)])<
1-n)usugu g 4

B |:U13(u9u15 — nesUg)
(1-n)uguy;

- [Uls — Uy5Xy — Ug6X; ]Xs

So, by using condition (22d) we obtain that

Us

2
ddita < {\/Uls(h — %)+ M(Xz - iz)}

_ (1*n)U11(U4U9U16*m95U5U7Hlfm)usulz(ugulsfnesue)]x X
{1-n)usuguys 274

Us Uy 4 (UgUy 5—Nesuig }-(1-n Juguy 1 (Usty 5% +usUs 6% )]X
1-n)usuiguy 1 4

_ (1-n)esuguy; — Ugg(Uglys — Nesug ) «
3
(1—n)uguy;

_ |:u13(u9u15 —NegUg )

(L—n)uguys

- [U18 = Uy5X; — UgeX) ]Xs

+ U17}X4X5

: . dig . . -
Now its easy to verify that —3 s negative definite under

the sufficient conditions (22a)-(22c). Hence the solution of
system (2) will approach asymptotically to E3 from any

initial point satisfies the above condition and then the proof
is complete. [ ]

Theorem (5): Assume that E, is locally asymptotically

stable in Rf, then it is globally asymptotically stable
provided that the following conditions hold:

m(l— n)95U5U7U11 + (1— m)u5u9u12u15

(23a)
< (1—n)uyUgUq gty g + N(L—m)esusuguy
UsUizs Ry +Ugyg <UfsSs (23b)

1-n)uguy;(usgXy+u
ne5u6+( ) 9 11( 1571 17) < UgUys
u
(1-n)esu Z: R +Ug) (23c)
UgUys < STLIRTOTS T 87 4 nesug
Uo
=18 g6 < (1~ %) (23d)
U15

Proof: Consider the following function

A 5 5 X A
1

R R R .. X
+CgXg + 64Xy +c5{x5 — X5 — %5 InA—5J
Xs

Where ¢;,i =1,...5 are positive constants to be determined.

L4()21,0,0,0, )?5)20 while L4(X1,....X5)> 0 for all

(X1,....x5)eR> and (xq,...x5)# (%,0,0,0,%5). Further more

by taking the derivative with respect to the time and
simplifying the resulting terms, we get that

% =—61(x —9(1)2 —EoUgupx5 —[64uy5 + G5ty X Xs
— (6 — Esups Nxg — R4 x5 — %5) - (U3 + €1 Jxax,
—[eses ks + €aug —E4uroxs — [€5ug — 55 Ixaxs
—[Cau6%s — E18y — Eaug o — [Eaus — suzglxaxs
—[eaug — €gmuy — &4 (1-mug, Ixpxy

—[e1 - €anug — €4 (L—nuys Jxax, —Esugxs
~[Equ1q — C1%y — E5us7%5 Jxg + CsureRs

Therefore by choosing the positive constants as below

A A Uig A €5
Cl :1, CZ =, C3 = y
UsUss UgUys
6 = UgU;5 — NesUg 6 = 1
4 = (1 ) ’ 5~
—N)UgUy;Us5 Ups
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And then substituting these constants in the above
equation, we get that

dL . Uig u Uig
_dt4 = _(Xl - X1)2 - U1U2X2 -8 X5 +——= 1 X5
UsUss Uis Uis
2 & "
UzUie U1sXs — UsUi5X; — Uyl
-1+ X1 Xy — Xy
UsUp 5 UsUy5

N )ugliy1 (Ugy g —MesUisty )= (147‘)1151112(1191115*71%'11<5)]><

X
(1-n)usuguy 1ty 5 274

Uy 4 (UgUy 5 —nesug )-(1—n )Ugull(uls><1+ul7)]><
(L-n)ugu11tss 4

L
!
[1— st 1 (Ugs-+Ug }-Uno (Ugly5— ”%Ue)]xs

(1-n)ugu11tss
Uig u u nuge u
l 9 15 6 5)+ 17:|X4X5

U9U11U15 Uis

. . dL, . . -
Now its easy to verify that —2 is negative definite under

the sufficient conditions (23a)-(23d). Hence the solution of
system (2) will approach asymptotically to E, from any

initial point satisfies the above condition and then the proof
is complete. [ ]

Theorem (6): Assume that Eg is locally asymptotically

stable in RE, then it is globally asymptotically stable
provided that the following conditions hold:

m(l— n)esusu7ull + (1— m)u5u9u12u15

..(24a

< (L= n)ugUgUy1Us6 + NesUsUgU1o (L— M) (242
U5U15 + u3u16)'(2 < U5U15X5 (24b)

1—n)uguq(UsugXs + Usly-X
nesue+( ) 9 11( 4UgXy +UsUy7 5)<u9u15

UsUig4

(1—n)esuqy(UgXs +ug) ~(24¢)

Uglyg < STLATOTS T 8 nesug
Uio

Proof: Consider the following functions
_ _ o Xo |
2

. _ P
+CyXy +C5| X5 — X5 — XLy —
X5

Where ¢;,i=1,....5 are positive constants to be determined.
L5(0,%,,00,%5)=0  while  Lg(xq,....x5)>0  for all

(X1,....xs)e R and (xq,...x5)#(0,%,0,0,%5). Further more

by taking the derivative with respect to the time and
simplifying the resulting terms, we get that

dL, _ _ = & _&
d_ts =g x2 - [c2u3 + cl]xlxz - [Cl - C5U15]X1X5

- 52“1“2()(2 - Xz )2 - [55U15>v<5 —CaU3Xy — El]xl
—(Caug — Cses5)X3X5 — (Callys + Csliy7 Xg Xs
~[eauy —camuy — 64 (L-mugoJxox,

—[Cqu14 — U, X, — CsUy7Xs Iy

- (52U5 - 55“16) Xz =X, X5 — 7‘5)

—[CsesXs + C3ug —Cquyglxs

—[e1 —canug — €4 (1 —n)ugs Jix,

Now by choosing the positive constants as below

- = Ue = €5
Cl —1, C2 = y C3 = ’
UsUs5 UgUys
g - UgUq5 — NesUg G = 1
(1— n)u9u11u15 Uis

And then substituting these constants in the above
equation, we get that

dL usu uUusu u
_5:_Xf_ 3-16 +1 Xlxz_u(xz_xz)z
dt UsUys UsUys

_ (1—n)u11(u4u9u16—me5u7u5)—(1—m)u5u12(u9u15—nesu6)]x X
{1-n)usuguy 1tys 274

_ _(1— n)e5u11(u9)'(5 + Us)— U10(”9U15 —N€sUg )}X\?
(L—n)uguy4Uys

_ U5U14(U9U15*n%'ueHlfn)U9U11(U4U6>?z+“5u17*5)]X
(1-n)usuguy 1tss 4

| UsU15X5 — UglyeXy — Usuls}xl

UsUss5

_ [ ug5(Uguys —nesug) N ui}% X
(1— 1) TRV Uis

: : dlg . . -
Now its easy to verify that = s negative definite under

the suffecient conditions (24a)-(24c). Hence the solution of
system (2) will approach asymptotically to Eg from any

initial point satisfies the above condition and then the proof
is complete. [

Theorem (7): Assume that Eg is locally asymptotically
stable in Rf , then it is globally asymptotically stable in the

sub region of Rf that satisfies the following conditions:

u
xl<i (25a)
(1—nuyq
UsUq5 X1 + UsUqsU
sUisX +Ustisty (25b)
UjUpUse

Copyright © 2016 IJTEEE.



INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 24

ISSN 2347-4289

UgX3 + €
9737 cxq (25¢)
Ug

[HasXiXa (25d)
Ur7

MUsU7Uy 3X4 X3 + (1~ m)u5u12u17X4 (25e)

< UgUzqliy 6Xg + MUsUzUy3XgXy + (L~ MUsUy oUs 7 Xy

[nu6§4 ]2 < Uglys (25f)

2

ugqu Uis|ujalg7 —(1—n U7X

[Uls—(l—n) 11 17} < 15[ 14U17 (: )Ull 17 1] (25g)
u13 U13X%4

2

Ugu UglupqUq7 —(1—nN)ugqup7x

[nuexﬁ 1o=17} < 8[ 14U17 ( Z ) 11U17 1] ..(25h)
U13X4 U13X4

Proof: Consider the following function

= = = Xq =
Lo(Xy, X5 ) = Cl(xl — ¥ = XLy i—}FCzXz
1

( —)2 54( =)2 -
Xa=Xs) + =50 =X +Tox

Where Gj,i =1,....5 are positive constants to be determined.
It is easy to see that Lg(x,..... xs)ecl(Rf,R) and
L6(X.0,%X3,%4.0)=0  while  Lg(xq,...x5)>0 for all

(X.....x5)€ RY and (xq,...x5) (%1,0,%3,%4,0). Further more

by taking the derivative with respect to the time and
simplifying the resulting terms, we get that

dL6 = =2 = —— = 2
T _Cl(xl - Xl) — C1X1Xg + C X Xy —CaUiUp X3
+ [E3nu6x1 + €4ulolx3 — X3 XX4 - >:<4)+ 1% Xs
= = =Y = 2
~[Bating ~ Ty, Jxs ~ %, f - Tougxdxs
- [61 ~Cy(L-nuyiX, le - ilxx4 - 7‘4)
= = = = 2
+ iUy Xy —C pUgX Xy — c3u8<x3 - x3)

- [52u4 +C3MU7 X3 + C4 (L — MUy X, ]x2 X4

~ [Bous —~ Tstg o xs — B~ Tstins Jaxs
+C3NUgX, (x1 - ilXXB - fs)— Calygx2Xs
+ [53u9§3 + Cges ]x3x5 + C3MU7 X, XX,

= 2 = = =
+C4 (L= m)ugpxo x5 — [05U17 —C4qli3Xy ]X4X5
Now by choosing the positive constants as below

u = u = =
216 C -7 =1

T =Ups, Cp=-—0 =L =C
1=Us, G m 4 UsXs 5

w

and then substituting these constants in the above equation
and using the conditions (25a),(25f)-(25h), we get that

2
dLg uis = u1g =
—= < =21 =X )]— | == (X3 = X
” { 2 (1 1) 2 (x3 —%3)

2
U5 (0 —53)+ 127 (g - (1; nhy1x) (x4 —1)
2 2u13X4

2
~ \/%(X3 _§3)_\/U17(U14 -(- n)Ulle)(X4 _§4)}

2u13%4

ui6
us

uie =
uis +EU3}(1X2 _|: Ugu2Xx2 —u15x1 —U15U1:|X2

u = =
%47)(42' - u15)(1}(5 - [U9X3 —ugX3 - e5]><3X5

[u -
£U4 +mu7X3 +£(1— m)Jlg
us u13

- " X2Xq
17
Mg (L-mu12xq

Now its easy to verify that dde is negative definite under

the sufficient conditions (25b)-(25e). Hence the solution of
system (2) will approach asymptotically to Eg from any
initial point satisfies the above condition and then the proof

is complete. m Note that the stated sub region in the above
theorem represents the basin of attraction of the equilibrium
point Eg.

Theorem (8): Assume that E; is locally asymptotically
stable in Rf , then it is globally asymptotically stable in the

sub region of Rf that satisfies the following conditions:

UsUg5 +UgUigXp <X

1 (263)
UsU1s
ui4
Xy < —4 (26b)
(L - mug,
UgX3 +€
9787 Cxq (26¢)
Ug
’u XoX
167274 oy, (26d)
U7
NUgU; 34 X3 + (L= N1 U7X } (26€)
< UgglysXg +NUgUy 3X3 Xy + (L= Nyt 7%,
- UgUoUgU
[mu; X, [ < --2-8-16 (26f)
Us
2
{U4U16 _ UgpUyy - m)}
Us K] (269)
< UyUpUy6[us 4Us7 — (L= m)uspUy 7%, |
UsU;3X4
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2
UgoU
{mu7x2 42017 }
U13X4 (26h)
US[U14U17 (1— m)ulzuﬂxz]

U13X4

Proof: Consider the following function

~ - - o~ X
L7 (Xy, o Xs) = S +C2(X2 — Xz = XLy )'Z_ZJ
2
C. - C - -
+?3(X3 —Xs)z +74(X4 —X4)2 +C5Xsg

where ¢;,i=1....5 are positive constants to be determined.

L7(0.%,,%3,%,,0)=0  while  Ly(xq,....x5)>0  for all

(X1....x5) € RY and (xq,...x5)# (0,X;,X3,%4,0) . Further more

by taking the derivative with respect to the time and
simplifying the resulting terms, we get that
dL

d_t7 = _[Elxl —C; —CouzXy ]Xl - [51 + 52u3]x1x2
+ E3mu7x2(x3 — X3 )(X4 - i4) - [55U17 — CqU13%4 ]X4X5
- [54U13X£ —CaUsX ]Xs +C4 (L= m)ugaxz(xs — X4 )2
+CaMmuz Xy (Xz —-X; )(Xs - 23)* [51 - E5‘115]X1X5
- Ezuluz(xz — X )2 - 52“4("2 X )(X4 - Y4)
+ 54“10(X3 ~ X3 )(XA — Xy )— CaUg (Xs — X3 )2
- [52U5 - 65Ule]><2 Xg — E41114(X4 — Xy )2
|:€1 + E3nu65('3 -+ 64 (l— n)lJll)?4:|
— - - X1X4
—€4(L—n)uysxs — C3nugxs
- [53U9X3 —C3UgX3 — Cs€5 ]X3X5
+Ca(L—mugoXy(xp — X5 Nxg — Xg)

So by choosing the positive constants as below
= = _Ues = U7 = _=
C].:UIS’ C2:—, C4_ — C3:C5:1
Us U13X4
and then substituting these constants in the above equation
and using the conditions (26b),(26f)-(26h), we get that

2
dLy | [ugupuip R L i
b [\/—2% (x2 ~%2)- /5> (x3 Xs)}
| fuupuwie -
o

‘/U17 (ugg —2- m)U12X2)(X4 B ;4)}2

2u13%4
g (U2 _(_mhioxa) ?
| U8 (. .y [ui7luzg —(@-mlioxp =
> (XS X3) \/ 2u13%a (X4 )(4):|

u
—|u15X1 —u15 — 3;6X2:|X1 {ulSJr :Zsls}(lXZ

2 ~
- XLZX - UlBXZ}% [U9X3 —ugx3 *95])(3)(5

—|uis + nu6§3 +w(1, n)f
u13

—L(1—nhy1xg - nuexs}qm
u13><4

. . Ly . : -
Now its easy to verify that a7 is negative definite under

the sufficient conditions (26a), (26c)-(25e). Hence the
solution of system (2) will approach asymptotically to E;

from any initial point satisfies the above condition and then
the proof is complete. [

Theorem (9): Assume that the third three species
equilibrium point Eg exists, then it is a globally

asymptotically stable in Rf , if the following conditions hold
m(L—n)esususUyq + (1—MusUigUs Uy } (27a)
< (L= n)ugugUy Uy + NesUsUgUzp(L—m)
[nesu6u14+(1—n)u9u11u15§1] 4 (1*”)U9U11[U4§2+U5U17§5]

e e (27b)

(1-n)esu1 |ug+UgXs

12
UsUg5 +UgUs6 <4 UUpUisUs6 (27¢)
Us Us

Proof: Consider the following function

Lg(Xq s X5)= €1

= = X = =
Xp — X1 —Xq In:—1J+C3X3 +CyXyg

X1
= = = X2 = = = Xg
+Cy| Xp =Xy — Xy IN== |+ C5| X5 — X5 — X5 In==
X2 Xs
where ¢j,i=1....5 are positive constants to be determined.

L(%,%,.00.%)=0 while Lg(Xq,.. Xg)>0 for all

(X1,....x5)eR> and (xl,...,x5)¢(§1,§2,0,0,§5). Further more

by taking the derivative with respect to the time and
simplifying the resulting terms, we get that

dLgiz( ::)2 [: = I :X ::)
—=-Ci|Xy — X1 | —[C1 +CoUz X — X1 Mxo = X5

= = MY
- }31 —C5U1sl Xy — XIX 5 - X5) CZUlUZ( Xp — Xz)
- C3U9 —c5e5 X3X5 - C4U13 +C5U17 4Xs5
- C4Ul4 _Clxl —C2U4X2 —C5U17X5 4
- C2114 —c3mu7 —C4 (1 m)‘J12]><2X4
- C2U5 - C5U16 X2 — Xz X5 — X5
- C1 7c3nu6 *04(1 “)U11]><1X4

- C3U8 - C4U10 + c5e5x5 X3

So by choosing the positive constants as below
= = ulG = E5
G =Us Cp=—, C3=—,
Us Ug
= UgUqs — NUgE =
g, — 29115 6% G =1
(L= n)uguiy

Then substituting these constants in the above equation
and using the condition (27c), we get that
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2
dL, = uguoU =
d—tgs—l:,lul5 (xl—x1)+ %516()(2 —Xz):l

{(1— nlig1(ugugus —mesusu7 )
(L-nusuguy

(L-m)usu12(uguss ﬂue%)}(zx4

(L- n)usugu1q
- n)65U11(U8 + Ugis)— ugo(uguys — nuges ) X3
(L—n)uguyg
[ u13(uguys —nesug)
l-nguiq
[ usuy4(uguis —nesug Jusuig
i (1-nlusugug

(- n)UsU9U11(U15Y1 + Ulﬂs)— (L—n)uguguy1Xo ‘4
(L-n)usuguy 1

+ U17}X4X5

. . dLg . . -
Now its easy to verify that d_t8 is negative definite under

the sufficient conditions (27a)-(27b). Hence the solution of
system (2) will approach asymptotically to Eg from any

initial point satisfies the above condition and then the proof
is complete. [ ]

Theorem (10): Assume that the top predator free
equilibrium point Eg exists, then it is a globally

asymptotically stable in the sub region of Rf that satisfies
the following conditions:

U9X3 +€g <X

3 (283.)
Ug
U15)i(1 + U16§2 < U18 (28b)
(L—nugyxg + (@ —mugpxp <ugg (28c)
UqUoUsU
d122 <£ 14245416 (28d)
9 U5
2 4
d14 <§U15d44 (286)
Uquou
Ay < 3 UalU2lie 4 (28f)
9 U5
2 4
dss” < gUgdas (289)
<HU6)i(4)2 < gugum (28h)
- 4 .
(mu7x4)2 < §U1U2U8U16 (28i)
where
Ao = UsUj5 + U3l dop = U35 — (1— n)u11u17
»=—"—— 24 = )
Us U13
g = Jal3tie —(1—mususpuy
UsU13
dag = NUgUy 3X4 X + mu7g13>:<4><2 + Ugl17 and
U13X4
dan = s 14 = (L=nugyxg = (L= m)ugpxy
44 =17 <
U13X4

Proof: Consider the following function

et = = X E -\
1

= SR X5 54( = )2 =
+Cy| X =Xy =Xy IN== |+ —\X4 = X4 ) +C5Xs
X5 2

where Ei ,i=1....5 are positive constants to be determined.

Lg(il,i2,>:<3,i4,0):0 while  Lg(xq,....x5)>0 for all

(Xl,....X5)€ RE and (Xl,...,X5)¢()%1,?(2,)%3,?(4,0). Further

more by taking the derivative with respect to the time and
simplifying the resulting terms, we get that

dstE’ = —f::l(Xl - ):(1)2 _[(:;1 +52u3KX1 - ):(1Xx2 - ):(2)

< I~ - - 2
- [C4U14 —C4(L=nup1xg —C4(L-mugox, KXA - X4)
- [63u9x3 —C3lUgX3 — E5e5]x3xs - [51 - 55“15]X1X5
+|C3NUg X1 + C3MU7 Xy + CaUyq [(Xg — X3 \Xq — X4

- [C5u18 —C1 X1 = CoUs Xy X5 — [Czus —CsUy6 X2 X5
= = = = = - 2
+ C3NUgXy (xl - XlXX3 - x3)— czuluz(xz - xz)

= I~ = = = - P
+ C3Mmu; Xy (x2 - Xy Xx3 - x3)— c3u8(x3 - x3)
- [52U4 —Cy (1— m)Ulz)74 Xy = X \Xq — X4
- [51 —C4(L-n)ugi%y le - XlXX4 — X4
= = = = 2
- [05U17 — C4ly3Xy X4 X5 — CqU13X4 X5
So by choosing the positive constants as below
= - u = u = =
CL=ls Cp=—2, Cp=—=-, C3=C5=1
Us Up3X4
Then substituting these constants in the above equation
and using the condition (28c)-(28i), we get that

2
oo ] Bl -s). Bl )

- _\/%(Xl - il)‘ \/%(Xs - iS)}

[ = Z ])( U17 2
—|U1g — U15Xg —U16Xo X5 ——);( X4 Xg

2

- [U9X3 —UgX3 — e5]><3x5
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Now its easy to verify that dditg is negative definite under

the sufficient conditions (28a)-(28b). Hence the solution of
system (2) will approach asymptotically to Eg from any

initial point satisfies the above condition and then the proof
is complete. ]
Theorem (11): Assume that the positive equilibrium Ejg

exists, then it is a globally asymptotically stable in the sub
region of Rf that satisfies the following conditions:

%5 xg (29a)
Ug
(1— n)Uj_le + (l— m)u12 Xo < U13Xg (29b)

X3 > xg,x4 > xZ withxg > x;
OR (29c¢)
X3 < x§,x4 < xZ withXg < xg

4 uqUsUisU
qlz2 < 2 Z1¥2H15416 (29d)
9 Ug
2 4
14 <§U15Q44 (29)
4 Uqusu
Q242 <1276 Qas (29f)
9 Ug
2 4 *
U34” <5 \Ug + UgXs flag (299)
* 4 *
NugXyp) < §U15 Ug + UgXg (29h)
(mU7XZ)2 < i U1U2U16 (Ug + U9X5) (29|)
9 Ug
UqgU *
where 02 =Ui5 + 15 3, tha =5 —[L1-nuggxy,
5
UyU *
U24 = —16 (1— m)u12x4 1 O34 =NUgX1 + MUz X5 +Upg

Us
and daz =ty3xs —(1—Nuygxg —(L—m)ugpx, .
Proof: Consider the following function

* % * X1
L1o(Xys Xs)= 01 [X1 — X =% Inx_*]
1

+Cy X2—X2—X2|n—* +? X4 — Xg

X2
*
* * * X5 C3 *\2
+C5 X5—X5—X5|n—* +—X3—X3
X5 2
* . e .
where ¢;,i =1,....5 are positive constants to be determined.

It is easy to see that
Lio(Xq e X5 ) € Cl(RE, R) and Llo(xf,xz,xg,xz,x;): 0

while  Lyg(Xq,....x5)>0 for all (x,...xs)eR} and

(xl,...,x5)¢(xf,xz,xz,xz,xg). Further more by taking the

derivative with respect to the time and simplifying the
resulting terms, we get that

diyo *( *)2 [ P I *X *)
F:_Cl Xl_xl _Cl +02U3 Xl_xl XZ_XZ
[ * * * K *X *)
* * *k * 2 * ( *)2
—[CaUg + C3UgXs [Xg — X3)“ —CaUyUs Xy — X
* * * * *
—|[Caly —C4(1— m)u12x4 Xp = Xp \Xg4 — X4
* * * * *
—|1 —C4 (1— n)UnXA X1 =X XXA —Xg
[ = % *
C4U13X5 — C4q (1—N)UgXg 12
-1 . (X4 —X4)
| —Ca(L—m)usoXy,
* * * *
—[Caly3Xs + c5u17kx4 = Xg)(X5 = X5)
* * * *
—[CoU5 — CS”lGIXZ - X XXS — X5

* * * *
—|C3UgX3 — C5€5 \X3 — X3 \X5 — X5

—[C1 = CsUy5 \X1 — Xy \X5 = X5
* * * *
+CgNUgXg (X — X1 )(X3 — X3)
* ® * *
+C3Mu7zXg (X = X2)(X3 — X3)
By choosing the positive constants as below
* * u * * *
0 =5, C=—2, c3=c4=c5=1
u

Then substituting these constants in the above equation
and using the condition (29b) and (29d)-(29i), we get that

2
o | ) (B,

r 2

UgU,U . fu +UgXs .
| [UgUaUgg (XZ_XZ)_ g +Ug 5(x3—x3)
3ug 3
— — 2
u <) [Ug +UgX .
_ ﬂ(xl_xl)_ /w(xa—xa)
3 3
— - 2
[ug +UgXs ( *) q44( .
T W= Xg )= [ Xa =Xy
3 3

_ 2
| sy [l )

B CEY Y PP )

* *
- [U13X4 + U17](X4 — Xy Xxs - Xs)

—[U9X3 —es]x3 - ngx5 - X;

. : dlyg . . -
Now its easy to verify that % is negative definite under

the sufficient conditions (29a) and (29c). Hence the solution
of system (2) will approach asymptotically to E10 from any

initial point satisfies the above condition and then the proof
is complete. ]

5. Numerical Simulation:
In this section, the dynamics behavior of system (2) is
studied numerically. The objectives of this study are
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confirming our obtained analytical results and understand
the effects of some parameters on the dynamics of system
(2). Consequently, the system (2) is solved numerically for
different sets of initial conditions and for different sets of
parameters. Recall that system (2) contains two enter-
specific competitions interactions, the first one between the
two preys at the first level while the second one between
the mature predator in the second level and the top
predator at the third level. Although, the competitive
exclusion principle states that “two species that compete for
the exactly same resources cannot stably coexist’; the
existence of predator makes the coexistence of all species
possible. Therefore we can’t find hypothetical set of data
satisfy the coexistence of all the species together, rather
than that we found the set of data that satisfy the
coexistence for four populations of them as given below.
Moreover since we presents the conditions that make the
system has an asymptotically stable positive equilibrium
point analytically, hence still there is possibility to have such
a data. It is observed that, for the following set of
hypothetical parameters values, system (2) has an

asymptotically stable top predator free equilibrium point E9
as shown in Fig. (1).

u;=1.2, u, =15, u3=1.19, u, =1.15, us =1.15,
Ug=0.3, m=n=0.5, u; =0.3,ug =0.1, ug =0.44,
Uy=0.1,uy;=0.3, u;,=0.3, u;3=1, uy, =0.05,
U;5=0.15,u;6=0.3, U;7=0.9, u;g=0.1, e5 =0.25

(a)

Populations
o
o

started at 0.4|
started at 0.6|
started at 0.9

First pery (x,)

T
started at 0.2
started at 0.4
started at 0.9

0.5~ bt

Second prey (x,)

i r c c r
0 0.5 1 15 2 2.5 3

Time x10"
) (d)
T T
started at 0.1
started at 0.9
started at 0.6
2
5 |
g |
2 |
5 05p 4
TN
g \
E \
\ ) \ N
AV
0 c . . . .
0 0.5 1 15 2 2.5 3

Time

(e)

started at 0.7,
started at 0.1]
started at 0.5|

Mature predator (x,)

: : : L :
0 0.5 1 1.5 2 25 3

i 4
Time X 10
f)
1 T T
started at 0.7
started at 0.1
started at 0.5
2
g
= 05 o
o
=
s
2
\\
\
0 : : : . :
o 0.5 1 1.5 2 25 3
Time x 10"

Fig. 1: Time series of the solution of system (2) for data given by (30).
(@) The trajectories of all species starting at (0.9,0.9,0.6,0.5,0.5) . (b)

The trajectories of X - species starting from three different initial
points. (c) The trajectories of X5 - species starting from three
different initial points. (d) The trajectories of X3- species starting from
three different initial points. (e) The trajectories of X4 - species starting

from three different initial points. (f) The trajectories of Xg - species
starting from three different initial points.
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However, for the data given by Eq. (30) with initial point
(0.3,0.5,0.2,0.3,0.6) that different from those used in Fig. (1),
the trajectory of system (2) approaches asymptotically to
third three species equilibrium point Eg as drawn in figure

).

X X X X
PR

I

x
of

Populations

o 0.5 1 1.5 2 2.5 3
Time X 104

Fig. 2: Time series of the solution of system (2), for the data given by
(30) with initial point (0.3,0.5,0.2,0.3,0.6) ,that approaches

asymptotically to Eg=(0.58,0.04,0,0,0.37)

Obviously Fig. (1) and Fig. (2), show clearly the existence
of sub region of global stability (basin of attraction) for each
equilibrium points of system (2). This confirms our obtained
analytical results present in the previous section. Indeed the
initial points used in Fig. (1) satisfy the conditions given in
theorem (10), while the initial point used in Fig. (2) satisfies
the conditions in theorem (9). Note that in order to discuss
the effect of the parameters values of system (2) on the
dynamical behavior of system (2), the system is solved
numerically for the data given in Eq. (30) with varying one
parameter each time. It is observed that, for the above
hypothetical data, the parameters values
u;j,i=56,7101218, M and N don’t have qualitative effect
on the dynamical behavior of system (2) and the system still
approaches to a top predator free equilibrium point Eg,

rather than that they have quantitative effect on the position
of Eg. Now by varying the parameter u; keeping the rest of

parameters values as in Eqg. (30), it observed that for
m <114 system (2) approaches asymptotically to
Eg = (X1,0,X3,%4,0), while for 1.32<u;<1.75 the solution of
system 2) approaches asymptotically to
E; =(0,X,,X3,%X4,0), Further for u;>1.75 the solution
approaches asymptotically to Es =(0,X»,0,0,X5) as shown
in the typical figure given by Fig. (3).

(a)

Populations
o
o

~ : L
0 5000 10000 15000
Time

(b)
15

Populations
X2

X X X X

I

<
of

15000

18 T T

1.5

X X X X X
ot &S

Populations

0.5

0

L :
0 5000 10000 15000
Time

Fig. 3: Time series of the solution of system (2) for the data given by
Eq. (30) with different values of Uj . (a) System (2) approaches to

Eg =(0.1,0,0.2,0.8,0) for u;=1.1. (b) System (2) approaches to
E; =(0,0.1,0.2,0.8,0) for u;=1.5. (c) System (2) approaches to
Es =(0,0.3,0,0,0.7) for u;=1.8.

On the other hand varying the parameter u, keeping the

rest of parameters values as in Eq. (30), it observed
that for 0.79<u,<1.04, the solution of system (2)

approaches asymptotically to E; = (0,X5,X3,%4,0) , while for
up<0.79 the solution approaches asymptotically to
Es =(0,X,,0,0,X5) . Moreover for the data given by Eq. (30)
with u3z>1.51, the solution of system (2) approaches
asymptotically to Eg =(X,0,X3,X4,0). In addition, varying
the parameter u, in the range u, >1.23 with other data as
in EQ.(30) the solution of system (2) approaches
asymptotically to Eg=(X1,0,X3,X4,0) too, however for
ug<1.05 , it is observed that the solution of system (2)

approaches asymptotically to the equilibrium point
E; =(0,X»,X3,%4,0) . All these cases can be represented in

figures similar to those shown in Fig. (3), with slightly
difference in the position of equilibrium points. Similarly, for
the data given by Eq. (30) with one of the following ranges
at a time ug>112; ug>054; u;<011; u;3>1.16;
U4 20.1; u5>0.22; ug>0.6; U7 <07 or e5=0.7 itis
observed that the trajectory of system (2) approaches
asymptotically to the third three species equilibrium point
Eg =(X1,%2,00,X5) as explained in the typical figure
represented by Fig. (2) with slightly difference in the
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position of point. Now, for the parameters values given in
Eq. (30) with varying the following three parameters
simultaneously ug >0.45, ujy =02 and uwg=>02, it is
observed that the solution of system (2) approaches
asymptotically to the first two species equilibrium point
E3 =(%1,X2,0,0,0) as shown in the typical figure given by

Fig. (4).

X X X X X
ot WS

Populations
=]
o
1

Time

Fig. 4: Time series of the solution of system (2), for the data given by
Eq. (30) with ug =0.5, uy4 =0.25 and uyg =0.3, that approaches

asymptotically to E3 =(0.9,0.01,0,0,0) .

However, for the parameters values given in Equation (30)
with varying the following two parameters simultaneously
us >1.3 and uyy >0.11, it is observed that the solution of
system (2) approaches asymptotically to the second two
species equilibrium point E4 =(%1,0,0,0,X%5) as shown in
typical figure given by Fig. (5).

X X X X X
ot WS W

Populations
o
u

0 0.5 1 15 2
Time X 104

Fig. 5: Time series of the solution of system (2), for the data given by
Eq. (30) with ug =1.5 and uy4 =0.15, that approaches

asymptotically to E4 =(0.6,0,0,0,0.3) .

Now, for the parameters values given in Eqg. (30) with
varying the following three parameters simultaneously
Up <0.9, uy 2045 and wg =0.35, it is observed that the

solution of system (2) approaches asymptotically to the
equilibrium point E, =(O,i,0,0,0) as shown in the typical

figure given by Fig. (6).

1.2 T T T

XX XX

x
of

Populations

i 1T5 2
Time x104
Fig. 6: Time series of the solution of system (2), for the data given by

Eg. (30) with up =0.8, uy4 =0.5 and u;g =0.4 , that approaches
asymptotically to E» =(0,1.11,0,0,0) .

Finally, for the parameters values given in Eq. (30) with
varying the following three parameters simultaneously

uz =125, w4 >0.4 and Uyg > 0.2, it is observed that the

solution of system (2) approaches asymptotically to the
equilibrium point E; =(1,0,0,0,0) as shown in the typical
figure given by Fig. (7).

Sl

X XX

o

X

X

Populations
o
u
.

0 0.5 i 1T5 2
Time X 104
Fig. 7: Time series of the solution of system (2), for the data given by

Eq. (30) with uz =1.3, uy4 =0.5 and ujg =0.4, that approaches
asymptotically to Eq =(1,0,0,0,0)

6. Conclusions and discussion

In this paper, we proposed and analyzed an ecological
model that described the dynamical behavior of the food
web real system. The model included five non-linear
autonomous differential equations that describe the
dynamics of five different populations, namely first prey
(N4), second prey (N,), immature predator (N3), mature

predator (N4) and N which is represent the top predator.

The boundedness of system (2) has been discussed. The
existence conditions of all possible equilibrium points are
obtained. The local as well as global stability analyses of
these points are carried out. Finally, numerical simulation is
used to specific the control set of parameters that affect the
dynamics of the system and confirm our obtained analytical
results. Therefore system (2) has been solved numerically
for different sets of initial points and different sets of
parameters starting with the hypothetical set of data given
by Eg. (30), and the following observations are obtained.
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1)

2)

3)

4)

5)

6)

7

8)

System (2) do not has periodic dynamic,
instead of that the solution of system (2)
approaches asymptotically to one of its
equilibrium point.

Decreasing the growth rate of the second prey,
u, under a specific value leads to destabilized
Eg and the solution approaches to Eg.
However increasing the value of u; above a
specific value leads the system to approaches
to E;, Further increasing this parameter makes
the system approaches to Eg.

Decreasing the wvalue of intra specific
competition between the individuals of second
prey, u,, under a specific value leads the
system to approaches to E;, Further
decreasing this parameter makes the system
approaches to Eg.

Increasing the parameter that describe the
intensity of competition of the first prey to the
second prey, Uj, above a specific value leads

to destabilizing of Eg and the solution

approaches to Eg.

Decreasing the value of attack rate of mature
predator to the second prey species, uy, under
a specific value leads the system to approaches
to E7, However increasing this parameter
above a specific value makes the system
approaches to Eg.

Decreasing the value of growth rate of the
mature predator due to its feeding on the first
prey, upp, under a specific value makes the
solution of system (2) approaches
asymptotically to Eg . The system has similar
behavior in case of decreasing u;7.

Increasing the value of gown up rate of the
immature predator, ug, above a specific value
makes the solution of system (2) approaches
asymptotically to Eg . The system has similar

behavior in case of increasing the value of ug,

U1z, U4, Ui, Uig OF €.

Finally, varying the parameters values
uj,i =56,7101218, m and n don't have
qualitative effect on the dynamical behavior of
system (2) and the system still approaches to a
top predator free equilibrium point Eg,

Keeping the above in view, all these outcomes depend on
the hypothetical set of parameters values given by Eq. (30),
different results may be obtained for different sets of data.
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