
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 19
ISSN 2347-4289

Copyright © 2015 IJTEEE.

Using Metrics To Measure The Complexity,
Understandability And Readability Of Open
Source Software Over Multiple Releases

Uttamjit Kaur

Department of Computer Science, GIME, Amritsar, India
Email: er.uttamjitkaur@gmail.com

ABSTRACT :Open-Source Software (OSS) is becoming very popular in today’s software development environment. In OSS, the development and
maintenance of the software is decentralized due to which maintainability is core issue in OSS development. The maintenance of OSS is a never ending
task.Software metrics help to control the uality of OSS. This paper reviews popular object-oriented metrics to analyze LOC, CC RCC and CLC of the
JACOB Open Source Software (OSS) of Twenty-two releases over a successive versions.The terms LOC, CC, RCC and CLC was computed for all the
Twenty-Two successive versions of OSS. The software metrics wre calculated using Understand4Java tool.

Keywords : Open-Source Software,Software Metrics,Versions and Software Complexcity.

1 INTRODUCTION

IN a changing environment, all software’s must change with
time to meet the need of its users “[2]. Therefore it is impor-
tant for software development and software developers to
keep software operational and to enhance the functionality of
the software “[2] in such a way that the problems arising from
changes are reduced. Open Source Software (OSS) has
been getting more interest in the last few years “.Open
Source Software (OSS) is usually developed by volunteers
from all over the world working co-operatively “[2]. In Open
Source Software (OSS) development scenario, software is
available on internet and it allows developers to contribute to
the new functionalities, improvement of existing software
version and submitting bug fixes to the current release “[2].
In the OSS, the development as well as maintenance of the
software is decentrized due to which maintainability is core
issue in OSS development “[2].In such a software develop-
ment scenario the maintenance of the open source software is
a never ending task.Software metrics help to control the quali-
ty of Open Source Software.

2 LITERATURE REVIEW
Jubair J. Al-Ja'afer and Khair Eddin M. Sabri King Abdullah
[1] presented how Chidamber and Kemerer (CK) introduce
the concept of metrics suits that encapsulate with the Me-
thod, coupling, cohesion and inheritance. The CK and LK
metrics are used to evaluate the design of object oriented
programs. Author wants to define the strength and weak-
nesses of a java programs. Mrinal Singh Rawat, Arpita Mittal
and Sanjay Kumar Dubey [7] in this paper, author describe
about the software quality can be viewed differently accord-
ing to factors i.e.: User view, Manufacturing view, product
view, value based view. Author defines the software metrics
as a valuable entity and used to measure the standard that
helps to evaluate the quality, efficiency, design and product.
It describes the merits and demerits of object oriented me-
trics. Hayes et al. [9] derived a model for estimating adaptive
maintenance effort. It was concluded that the number of
LOC changed and the number of operators changed are
strongly correlated with the maintenance effort. Denis et al.
[2] investigated the relationships between software maintai-
nability and other internal software quality attributes. The
source code characterstics of five java-based open-source

software products wre analyzed.

3 OBJECTIVE OF THE STUDY
The objective of this study is to analyze Line of Code (LOC),
Cyclomatic Complexcity (CC), Count Line Code (CLC) and
Ratio Comment to Code (RCC) for Twenty-Two versions of
the Open Source Software.

4 RESEARCH METHODOLOGY
The Source code of Open Source Software (OSS) i.e JA-
COB was used in the study as the data source.JACOB is a
JAVA-COM Bridge that allows you to call COM Automation
components from java.It uses JNI to make native calls to the
COM libraries.JACOB runs on x86 and x64 environments
supporting 32 bit and 64 bit JVMs.As of versions 1.8,the fol-
lowing things are true about JACOB:

 The project license changes from the LGPL to BSD.

 JACOB is now complied with java 1.4.2.

 The project is hosted on SourceForge.

Understand 4 java tool provides information regarding
code.All information on functions, classes, variables, etc,
how they are used, called, modified and interacted
with.Understand is very efficient at collecting metrics about
the code and providing different ways for yo view it.There is
a substantial collection of standard metrics quickly available
as well as options for writing metrics cover exactly what you
need.

TABLE 1
VALUES OF METRICS FOR DIFFERENT RELEASES OF JACOB

Versions
Av.
CC

LOC
Count
Line
Code

Ratio
comment
To code

1.9

1.46 4484 1483 1.71

1.9.1

1.61 5005 1704 1.64

1.10.0

1.7 5422 1856 1.65

1.10.1 1.71 5466 1874 1.64

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 20
ISSN 2347-4289

Copyright © 2015 IJTEEE.

1.11 1.66 6244 2220 1.55

1.11.1 1.69 6279 2250 1.54

1.12 1.74 6686 2432 1.51

1.13 1.76 6845 2506 1.49

1.14 1.81 6845 2942 1.63

1.14.1 1.81 8396 2947 1.63

1.14.3 1.8 8420 2949 1.64

1.15 1.92 7927 2806 1.61

1.15-M4 1.92 7927 2806 1.61

1.16 1.93 7932 2810 1.61

1.16-M1 1.92 7928 2806 1.61

1.16-M2 1.93 7932 2810 1.61

1.17 1.93 7948 2818 1.6

1.17-M2 1.93 7945 2820 1.6

1.17-M3 1.93 7942 2820 1.61

1.17-M4 1.93 7948 2818 1.6

1.18-M1 1.93 7948 2818 1.6

1.18-M2 1.93 7948 2818 1.6

5 ANALYSIS
This section presents various object-oriented metrics and
their relationship with the quality of the Open Source Soft-
ware (OSS).A comparison of the measured values of the
metrics is made with an increase in the value of Cyclomatic
Complexcity (CC) and Lines of Code (LOC) represent it is
harder to understand and maintain the software. It clearly
represents a decrease in the quality of the software.There
are many metrics that are traditional functional development.
The metrics that are applicable to object oriented develop-
ment: Complexcity, Size and readiability.To measure the
complexcity, the Cyclomatic complexcity is used.

5.1 METRIC 1: Cyclomatic Complexcity (CC)
Cyclomatic Complexity (CC) metrics [6] used to identify the
complexity of a software program which is based on a di-
rected graph. The formula for calculating the cc is the Num-
ber of edges minus the number of nodes plus 2. A high value
of Cyclomatic Complexity indicates high complexity of a pro-

gram which is harder to test, understand, modify and main-
tain [9]. To reduce the complexcity of software development,
it is suggested to limit the Cyclomatic Complexcity to 10[11].
From Table1 it is clear that cyclomatic Complexcity increases
as releases over its lifecycle.Figure1 shows the Cyclomatic
Complexcity of JACOB.

Fig: Cyclomatic Complexity

Fig 1.Cyclomatic Complexcity of JACOB

5.2 METRIC 2: Lines of Code (LOC)
Lines of Code represent the size of a class that is used to
evaluate the ease of understanding of code by developers
and maintainers. LOC measures vary depending on the cod-
ing language used and the complexity of the method. How-
ever, since size affects ease of understanding by the devel-
opers and maintainers, classes and methods of large size
will always pose a higher risk. High value of LOC indicates
less understandability of the software and also affected the
quality of the software [9].From Table1 it is clear that LOC
increases as releases over its lifecycle.Figure2 shows the
LOC of JACOB.

FIG 2: LOC OF JACOB

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 21
ISSN 2347-4289

Copyright © 2015 IJTEEE.

5.3 METRIC 3: Count Line Code (CLC)
In many programming language, Count Line Code (CLC)
counts blank lines, comment lines and physical lines of-
source code. CLC is known to run on many Windows as Li-
nux, FreeBSD, OpenBSD, Mac OS X or Higher.From Table1
it is clear that CLC value increases over the successive ver-
sions.Figure3 shows the Count Line Code of JACOB.

Fig 3: Count Line Code of JACOB

5.4 METRIC 4: Ratio Comment to Code (RCC)
Comment Percentage is defined as a ratio of the Number of
comment lines to the Number of Non-Blank LOC [9]. In any
stage of the life cycle, comments will help developers and
maintainers to better understand the programs. Since com-
ments assist developers and maintainers, higher comment
percentage increases understandability and maintainabili-
ty.From Table1 it is clearly defined that RCC decreases. So
readability of code is difficult to underatand by software de-
velopers and development. Figure4 Shows the RCC of JA-
COB.

Fig 4: Ratio Comment to Code of JACOB

6 CONCLUSION
The Lines of Code, Cyclomatic Complexcity, Ratio Comment
to Code and Count Line Code of the JACOB software was
observed over Twenty-Two Successive versions.From the
result it was observed that JACOB has the highesr Cyclo-
matic Comlexcity and Lines of Code value. The lower values
of Ratio Comment to Code in case of JACOB indicates that
the versions of this software are harder to under-
stand.Increases in the vaues of Cyclomatic Comlecity,Lines
of Code and decreses in the value of Ratio comment to
Code indicates that JACOB software must contain complex
class,packages and events that harder to understand and
reuse.

REFERENCES
[1] CHIDAMBER-KEMERER (CK) AND LORENZE-KIDD

(LK) METRICS TO ASSESS JAVA PROGRAMS Jubair
J. Al-Ja'afer and Khair Eddin M. Sabri King Abdullah II
School for Information Technology, University of Jordan,
Jordan.

[2] Coleman, D. 1992 Assessing maintainability. Proceeding
of the 1002 Software Engineering Productivity Confe-
rence, pp.525-532, San Jose, CA.

[3] Denis Kozlov, Jussi Koskinen, Markku Sakkinen and
JJouni Markkula, “Assessing Maintainability hange Ovr
Multiple Software Release”, Journel of software main-
tenance and evolution: Research and Practice, 20(1),
pages 1-58, 2008.
http://sourceforge.net/projects/jacob-project/
http://sourceforge.net/projects/jacob-
project/files/?source=navbar
https://scitools.com/

[4] International Journal of Advanced Computer Science
and Applications, Vol. 3, No. 1, 2012 “Survey on Impact
of Software Metrics on Software Quality” Mrinal Singh
Rawat1, Arpita Mittal2 Sanjay Kumar Dubey3.

[5] Jacobson, Ivar, Object oriented Software Engineering,A
Use Case Driven Approach,Addison-Wesley Publishing
Company,1993.

[6] J. Hayes, S. atel, L. Zhao, “A MtricsBased Software
Maintenance Effort Model”. Proceedings 8

th
 European

Conference on Software Maintenance and Reengineer-
ing, IEEE Computer Society Press, Pages 254-260, Los
Alamitos, Calfornia, 2004.

[7] McCabe, T.J. 1`976. A Complexity Measure, IEEE
Transaction on Software Engineering, vol.2, No.4,
pp.308-320.

[8] Watson, A.H, McCabe, T.J and Wallace,
D.R.1996.Structured testing: A testing methodology us-
ing the Cyclomatic Complexity metrics.National Institute
of Standards and Technology Special Publication 500-
235.

http://sourceforge.net/projects/jacob-project/
http://sourceforge.net/projects/jacob-project/files/?source=navbar
http://sourceforge.net/projects/jacob-project/files/?source=navbar
https://scitools.com/

