
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06                      84 
ISSN 2347-4289 

Copyright © 2015 IJTEEE. 
 

Genemutant: Test Suite Adequacy Check For 
Path Coverage Testing Based On Mutating Test 
Suite Using Genetic Algorithm 
 
Dr Namita Gupta 
 
Computer Science and Engineering Department, Maharaja Agrasen Institute of Technology, Rohini, Delhi, India 
Email: namita@mait.ac.in 
 
ABSTRACT: Code coverage is a measure used to describe the degree to which the source code of a program is tested by a particular test suite. A 
program with high code coverage has been more thoroughly tested and has a lower chance of containing software bugs than a program with low code 
coverage. Many different metrics can be used to calculate code coverage like statement coverage, decision coverage, condition coverage, path 
coverage etc. Path coverage ensures that every independent path in the program should be executed at least once by the give test suite. The proposed 
technique check the adequacy of given test suite and design new test cases (if required) by mutating the existing test cases, for path coverage testing 
based on genetic algorithm using XNOR fitness function. 
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1. INTRODUCTION 
Software testing is done to detect the faults in the given source 
code. Test cases are developed to test the software. Static and 
dynamic testing techniques are available to test the software. 
Static testing techniques analyze the target software without 
actually executing the code to identify the errors. Dynamic 
testing executes the code using given test cases to detect 
presence of faults. Mutation testing also called Mutation analy-
sis or Program mutation is the testing technique, used to eva-
luate the quality of existing software test suite and design new 
test cases. Mutation testing involves modifying a program's 
source code. Each mutated version is called a mutant and 
tests detect and reject mutants if the behavior of the original 
version of the source code differs from the mutant. This is 
called killing the mutant. Test suites are measured by the per-
centage of mutants that they kill. New tests can be designed to 
kill additional mutants. The purpose is to help the tester devel-
op effective tests or locate weaknesses in the given test data 
used for the program or in sections of the code that are sel-
dom or never accessed during execution. Mutants are created 
based on mutation. Many mutation operators have been ex-
plored by researchers. Here are some examples of mutation 
operators for imperative languages: 

 Statement deletion. 

 Replace boolean expression with true or false. 

 Replace arithmetic operator with another, e.g. + with *, - 
and /. 

 Replace relational operator with another, e.g. > with >=, 
== and <=. 

 Replace variable with another variable declared in the 
same scope (variable types must be compatible). 

 
Adequacy of the given test suite is evaluated through mutation 
score defined as: 
mutation score  
= number of mutants killed / total number of mutants (1) 
 
Although powerful, Mutation Testing is complicated and time-
consuming to perform without an automated tool. Efficiency of 
the technique depends on the number of mutants created. 
Few mutants may miss some areas of programs to test if the 
corresponding test case is missing in the give test suite. Too 

many mutants increase overhead and technique complexity. 
To check the adequacy of test suite efficiently and to design 
new test cases, a new technique is proposed. Instead of mod-
ifying the source code to create new mutants, test case is mu-
tated i.e., an input value of the single variable in the given test 
case is changed to satisfy the given condition at the predicate 
node. The proposed algorithm is based on Path testing. The 
objective of path testing is to ensure that each possible inde-
pendent path through the program is executed at least once. 
An independent program path is one that traverses at least 
one new edge in the flow graph. In program terms, this means 
exercising one or more new conditions. Both the true and false 
branches of all conditions must be executed. The starting point 
for path testing is a program flow graph. A flow graph consists 
of nodes representing decisions and edges showing flow of 
control. The flow graph is constructed by replacing program 
control statements by equivalent diagrams. Each branch in a 
conditional statement (if-then-else or case) is shown as a sep-
arate path. An arrow looping back to the condition node de-
notes a loop. Each statement in the program graph is 
represented as a separate node where the node number cor-
responds to the line number in the program. To reduce the 
complexity of program graph, control flow graph is created 
where sequential nodes are replaced by single node. Control 
graph contain following different types of nodes: 

i. Starting Node / Initial Node 
ii. Terminating Node / Stop Node / End Node 

iii. Sequential Node 
iv. Predicate/Decision Node 
v. Junction Node 

 
Path testing ensures that every path through a program has 
been executed at least once. If all of these paths are executed 
we can be sure that every statement in the method has been 
executed at least once and that every branch has been exer-
cised for true and false conditions. The number of tests that 
are required to ensure that all paths through the program are 
exercised is the same as the cyclomatic complexity of the 
code fragment that is being tested. To evaluate the adequacy 
of the given test suite and to design new test cases, our pro-
posed algorithm uses genetic algorithm discussed below. 
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1.1 GENETIC ALGORITHM 
Genetic algorithm starts with initial pool of chromosomes and 
attempts to improve the set by evolution [1][2]. It typically has 
five parts:  
1) a representation of a chromosome - . A chromosome can 

be a binary string or a more elaborate data structure.  
2) an initial pool of chromosomes - It can be randomly pro-

duced or manually created. 
3) a fitness function - The fitness function measures the sui-

tability of a chromosome to meet a specified objective 
i.e., a chromosome is fitter if it corresponds to greater 
coverage.   

4) a selection function - The selection function decides 
which chromosomes will participate in the evolution stage 
of the genetic algorithm made up by the crossover and 
mutation operators. 

5) a crossover operator and a mutation operator - The cros-
sover operator exchanges genes from two chromosomes 
and creates two new chromosomes. The mutation opera-
tor changes a gene in a chromosome and creates one 
new chromosome.  

 
Basic algorithm for a Genetic Algorithm [3] follows well-defined 
steps: 

initialize (population)  
evaluate (population)  
while (stopping condition not satisfied) do  
{  

selection (population)  
crossover (population)  
mutate (population)  
evaluate (population)  

}  
 
The algorithm will iterate until the population has evolved to 
form a solution to the problem (sufficient test cases), or until a 
maximum number of iterations have taken place (suggesting 
that a solution is not going to be found given the resources 
available). In this paper, we discussed the proposed GENEmu-
tant algorithm for path testing. To evaluate the effectiveness of 
given test suite and identify the section of codes not covered 
by the given test cases, proposed method applies genetic al-
gorithm based on f(XNOR) fitness function. 
 

2. RELATED WORK 
Many researchers have proposed the application of genetic 
algorithm in different areas of software testing. Riccardo and 
Langdon [4] described two forms of crossover, one-point cros-
sover and the new strict one-point crossover. Strict one-point 
crossover, behaves exactly like one-point crossover except 
that the crossover point can be located only in the parts of the 
two trees which have exactly the same structure (i.e. the same 
functions in the nodes encountered traversing the trees from 
the root node). Sean and Lee [5] showed that crossover is 
better over mutation given the right parameter settings (primar-
ily larger population sizes). It is observed that mutation is more 
successful in smaller populations, and crossover is more suc-
cessful in larger populations. Leonardo [6] proposed a fitness 
function that incorporates the three basic conditions required 
by a test case to kill a given mutant of some subject program. 
Method uses genetic algorithm to search for test cases that 
satisfy the reachability condition. The proposed fitness function 
has been implemented, together with a genetic algorithm and 

mutation analysis tool. Tzung-pei et al. [7] proposed a new 
genetic algorithm, the dynamic genetic algorithm (DGA). DGA 
simultaneously uses more than one crossover and mutation 
operators to generate the next generation. In the next genera-
tion, the ratios of crossover and mutation change along with 
the evaluation results of the respective offspring. Maria and 
Silvia [8] designed GPTesT, a testing tool based on Genetic 
Programming. Fault-based testing criteria generally derive test 
data using a set of mutant operators to produce alternatives 
that differ from the program under testing by a simple modifi-
cation. GPTesT uses a set of alternatives genetically derived, 
which allow the test of interactions between faults. GPTesT 
implements two test procedures respectively for guiding the 
selection and evaluation of test data sets. Wen-Yang et al. [9] 
showed that the probabilities of crossover and mutation are 
critical to the success of genetic algorithms. A generic scheme 
for adapting the crossover and mutation probabilities in re-
sponse to the evaluation results of the respective offspring in 
the next generation is proposed. Abdelaziz et al. [10] pre-
sented a new general technique that combines the concept of 
spanning set with a genetic algorithm to automatically gener-
ate test data for spanning set coverage. Lawrence and Colin 
[11] present a semantically driven mutation (SDM) technique 
which is used to improve the mutation operation in genetic 
programming (GP). The SDM algorithm has been developed 
based on semantic analysis of the changes caused by the 
mutation operator. The SDM algorithm works to improve per-
formance by not allowing mutated programs to be produced 
when they are behaviorally equivalent to the original program, 
but it also avoid returning to sections of the search space that 
have effectively already been traversed. William et al. [12] 
used a multi objective Pareto optimal genetic programming 
approach to explore the relationship between mutant syntax 
and mutant semantics with respect to given test sets. The GP 
algorithm evolves mutant programs according to two fitness 
functions: semantic difference and syntactic difference. Syn-
tactic distance sums the number of changes weighted by the 
actual difference. Semantic distance is measured as the num-
ber of test cases for which a mutant and original program be-
have differently. Wang [13] proposed a genetic algorithm 
based test case prioritization algorithm. Prenal and Kale. [14] 
discussed the use of genetic algorithms to automatically gen-
erate test cases for path testing. Each iteration of the genetic 
algorithms generates a generation of individuals. But some-
times, solution derived may be trapped around a local opti-
mum and as a result fail to locate required global optimum. 
Timo [15] analysed the importance of mutation in genetic pro-
gramming, and reveal new insights into the behavior of muta-
tion-based genetic programming algorithms. Chayanika et al. 
[16] discussed the application of genetic algorithm in different 
areas of software testing like white box testing (data flow test-
ing, path testing), black box testing (mutation testing, regres-
sion testingGUI testing) etc. Authors of the paper found that by 
using Genetic Algorithm, the results and the performance of 
testing can be improved.  To conclude, the use of a genetic 
algorithm to search for test cases that satisfy the reachability 
condition is not new. The attempt to incorporate necessity and 
sufficiency conditions is more innovative. In the proposed me-
thod, given subject program is not mutated but test cases are 
mutated and crossover using genetic algorithm based on the 
selection criteria as determined by the proposed fitness func-
tion to search the test cases satisfying path testing. The struc-
ture of the paper is organized as follows. In Section 3, the pro-
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posed algorithm is discussed; case studies based on pro-
posed method are discussed in section 4. We conclude in sec-
tion 5. 
 

3. PROPOSED ALGORITHM - GENEMUTANT 
For the given source code, cyclomatic complexity technique is 
used to find all possible independent paths.  Test suite is then 
used to identify the paths covered by the given test. Each in-
dependent path is represented as a binary sequence showing 
1 if node is present in the path and 0 if node is absent. Thus, 
each path Pi is represented as a binary sequence containing 
nodes [ n1 n2…… nk ], where k is the total no. of nodes in flow 
graph. Likewise, for each given test case Tj, identify the binary 
sequence of nodes appearing in the path traversed by it and 
represent the same as [ n1 n2 …… nk]. Next step is to select 
the test case for each independent path from the given test 
pool and design new test case(s) for non-traversed path(s). 
Genetic algorithm is applied to select/design the test cases. 
Steps for the genetic algorithm are: 
 
1. Fitness Function 

 

Compute Rji= ij [Tj XNOR Pi]    (2) 
such that, 
 
function  

(3) 
 
i.e.,  ( 0 XNOR 1 ) is 0 
        ( 1 XNOR 0 ) is 0 
        ( 0 XNOR 0 ) is 1 
        ( 1 XNOR 1 ) is 1 

 
A test case Tj is fitted for path Pi  if it contains all 1’s in resul-
tant row after applying  between them. To avoid re-

dundancy among test cases and minimize the number of test 
cases, the following rules should be followed: 

Rule 1 : If more than one test case traverses the same 
path, then randomly select single test case for final test 
suite. 
Rule 2 : If a test case traverses more than two independent 
paths, then preference should be given to such test case 
over others while selecting the test case for Rule 1.  
 

2. Selection  
The selection procedure selects individuals of the current popu-
lation for development of the next generation. Various alterna-
tive methods exist but all follow the idea that the fittest have a 
greater chance of survival. Selection chooses the chromo-
somes to be recombined and mutated out of this initial popula-
tion.  [n.gupta] Identify the non-zero predicate nodes np in the 
non-traversed path nodes sequence. If, the immediate next 
node nx is not a predicate node then,  
 

If nx =  (4) 

If  nx is a predicate node then, 
 

If nx =  (5) 

Check the condition at the predicate nodes in the non-
traversed path. Match within the selected chromosomes (test 
case) that satisfy the give condition(s). Test cases that match 
maximum number of Boolean values of predicate nodes in the 
non-traversed path are selected to have their solution passed 
onto the next generation. 

 
3. Crossover  
Selected chromosomes are crossover to create next genera-
tion. It combines two chromosomes (parents) to produce a 
new chromosome (child). The new chromosome takes the 
best characteristics from each of the parents. One point, two 
points, uniform, arithmetic are few crossover operators [9]. In 
GENEmutant algorithm, arithmetic operator is used. Arithmetic 
operator linearly combines two parent chromosome vectors to 
produce two new children according to the following equa-
tions: 

 
Child1 = a * parent1 + (1-a) * parent2   (6) 
Child2 = (1-a) * parent1 + a * parent2   (7) 
 

where a is a random weighting factor between 0 and 1, cho-
sen before each crossover operation. Take a = 0.5 initially and 
then increase or decrease its value based on the results ob-
tained. 

 
4. Mutation 
Even though the crossover produces a large range of solutions, 
it may lead the evaluation function towards local maxima. The 
purpose of mutation in Genetic algorithm is preserving and 
introducing diversity. For different genome types, different mu-
tation types are available [9] like flip bit, Gaussian, insert, swap, 
inversion, scramble mutation etc. In GENEmutant algorithm, if 
the predicate condition is not satisfied by the selected chromo-
somes after multiple crossover iterations, then existing chromo-
some is mutated based on the predicate condition. 
 

4. CASE STUDY 
In this preliminary study, we used our proposed algorithm on 
three moderately-sized programs. 
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EXAMPLE 1 
Consider the source code given below 

start int isabsequal(int x, int y) 
{ 

1 if (x==y) 
2 return 1; 
3 else  if (x==-4) 
4 return -1; 
5 Else 
6 return 0; 
stop } 

 
Given source code is represented as control flow graph shown 
as figure 1 below. 
 
                             
                                    start 
 
 
                                    ( x==y) ?   
            
        true                           false 
                                         
                                                    (x==-y) ? 
                           
                        true                        false 
 
 
 
   
   stop                
        
 
 

Figure 1: Control flow graph of example 1 
 

Node No. 
Test Condition 
at predicate 
node 

n1 x == y 

n3 x == -4 
 

Table 1 : Shows the predicate nodes in the flow graph and the 
condition at each predicate node 

 
On applying cyclomatic complexity technique,  

No. of independent paths = no of predicate nodes + 1 
                                         = 2+1 = 3 
Independent paths are 
(Path 01)P1= [ start n1 n2 stop ] 
(Path 02)P2= [ start n1 n3 n4 stop] 
(Path 03)P3= [ start n1 n3 n5 n6 Stop ]  
 

There is a total of 6 nodes from n1 to n6 (excluding the Start 
and Stop node). Each path is represented as a binary se-
quence of nodes [ n1 n2 n3 n4 n5 n6 ] showing 1 against tra-
versed node and 0 against untraversed node in corresponding 
path. 
Thus,  

Path P1 is equivalent to [ 1 1 0 0 0 0 ] 
Path P2 is equivalent to [ 1 0 1 1 0  0 ] 
Path P3 is equivalent to [ 1 0 1 0 1 1 ] 
 

 

Path 
No.  

Path  
Node  
Binary 
sequence 

Predicate 
node(s) in 
given path 

Test 
Condition 
at 
predicate 
node 

Boolean 
value at 
predicate 
node 

P1 
[n1 n2] 
[ 1 1 0 0 0 
0 ] 

n1 x == y True 

P2 
[ n1 n3 n4 ] 
[ 1 0 1 1 0  
0 ] 

n1 x == y False 

n3 x == -4 True 

P3 

[n1 n3 n5 n6 

] 
[ 1 0 1 0 1 
1 ] 

n1 x == y False 

n3 x == -4 False 

 

Table 2: Shows the details about predicate nodes appearing 
in each independent path 

 
Given input test cases 
T1: {x=5, y=3} 
T2: {x=9, y=9} 
 

Test 
case 
No. 

Test 
Case 

Predicate 
node(s) in 
flow graph 

Test 
Condition at 

predicate 
node 

Boolean 
value at 

predicate 
node 

T1 
{x=5, 
y=3} 

n1 x == y False 

n3 x == -4 False 

T2 
{x=9, 
y=9} 

n1 x == y True 

n3 x == -4 False 
 

Table 3: Shows the Boolean value of predicate nodes for the 
given test case(s) 

 
Each test case Tj, is represented as a binary sequence of 
nodes appearing in the path traversed by it. Thus, each test 
case is represented as a binary sequence containing [n1 n2 n3 
n4 n5] by traversing the flow graph (Figure 1) and using the 
information given in table 1 and 3. 
  

Test T1 is equivalent to [ 1 0 1 0 1 1 ] 
 
Test T2 is equivalent to [ 1 1 0 0 0 0 ] 

 

Compute Rji= ij [Tj XNOR Pi ], i.e., 
 
T1XNOR P1=[ 1 0 1 0 1 1 ] XNOR [ 1 1 0 0 0 0 ]= [ 1 0 0 1 0 0 ] 
 
T1XNOR P2=[ 1 0 1 0 1 1 ] XNOR [ 1 0 1 1 0 0 ]= [ 1 1 1 0 0 0 ] 

 

T1 XNOR P3=[ 1 0 1 0 1 1 ] XNOR [ 1 0 1 0 1 1 ] = [ 1 1 1 1 11 ] 

 

T2 XNOR P1= [1 1 0 0 0 0 ] XNOR [ 1 1 0 0 0 0 ] = [ 1 1 1 1 11 ] 
 
T2 XNOR P2=[ 1 1 0 0 0 0 ] XNOR [ 1 0 1 1 0 0 ]= [ 1 0 0 0 1 1 ] 
 
T2 XNOR P3=[ 1 1 0 0 0 0 ] XNOR [ 1 0 1 0 1 1 ]= [ 1 0 0 1 0 0 ] 

 
Now, a test case Tj is selected corresponding to path Pi that 
contains all 1’s in resultant row.  

 
55  5

5 

3

5 

4

5 

t

5 

2

5 

1  5

5 

 
5s  5

5 
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So, in final test suite, test case T1 is selected corresponding to 
path P3 and test caseT2 is selected corresponding to path P1. It 
is analyzed that there is no test case corresponding to path P2. 
Next step is to design new test case from the given test suite. 
Genetic algorithm is applied to design the new test case for 
path P2. Steps for the genetic algorithm are: 
 
1. Selection  
Test cases are selected from the given population (test suite) 
that matches maximum number of boolean values of predi-
cate nodes in the non-traversed path P2.  

 
Using Tables 2 and 3, following observation is recorded: 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Shows test case matching to missed path 
 

As test case T1 matches one test condition of P2 non-traversed 
path, so only test case T1 is selected for designing new test 
case for path P2. Now, next step is to mutate the test case so 
that it will satisfy all the test conditions of non-traversed path. 

 
2. Mutation 

Test case T1{x=5, y=3} matches the required predicate condi-
tion at node n1(x==y), but violates the predicate condition at 
node n3 (x==-4). If the predicate condition is not satisfied by 
the selected chromosomes, then existing chromosome is mu-
tated based on the predicate condition. Hence chromosome T1 
is mutated as {x=-4, y=3}. Now both the conditions at the pre-
dicate nodes are satisfied and mutated test case successfully 
traverse path P2. Hence, three test cases T1 : {x=5, y=3} for 
path P3, T2 : {x=9, y=9} for path P1 and new test case T3 : {x=-
4, y=3} for path P2 are required to test all the independent 
paths of the above problem. 
 
EXAMPLE 2 
Consider the source code given below 

start int product (int exp) 
{ 

1 int i = exp; 
2 int j = 1;    
3 while ( i > 0 ) {                        
4 j = 2*j; 
a. 5     i--;  }   
5 return j;   

                          stop } 
 
 
 
 
 
 
 

                            
                                    start 
 
 
                              
            
                                         
                                      (i>0) ? 
    
                                 
 
  
  
 

                               true 
 
 
 
                                                    false 
 
 
 
 
 
 
 

Figure 2: Control flow graph of example 2 
 

Node 
No. 

Test Condition at predicate 
node 

n2 i > 0 (initially i = exp) 
 

Table 5 : Shows the predicate node(s) in the flow graph and 

the condition at predicate node 
 
On applying cyclomatic complexity technique,  

No. of independent paths  
= no of predicate nodes + 1 
 = 1+1 = 2 

Independent paths are 
(Path 01) P1= [ start 1 2 4  stop ] 
(Path 02) P2= [ start 1 2 3 ((2 3)) 4 stop] 
((2 3)) shows n iterations of loop. 
 

There is a total of 4 nodes from n1 to n4 (excluding the Start 
and Stop node). Each path is represented as a binary se-
quence of nodes  [ n1 n2 n3 n4 ] showing 1 against traversed 
node and 0 against untraversed node in corresponding path. 
Thus,  

Path P1 is equivalent to [ 1 1 0 1 ] 
Path P2 is equivalent to [ 1 1 1 1 ] 

 

Path 
No.  

Path  
Node 
Binary 
sequence 

Predicate 
node(s) in 
given path 

Test 
Condition 
at predicate 
node 

Boolean 
value at 
predicate 
node 

P1 
[ n1 n2  n4 ] 
[1 1 0 1] 

n1 
i > 0  

(initially i = 
exp) 

False 

P2 
[ n1 n2 n3 n4] 
[1 1 1 1] 

n1 
i > 0  

(initially i = 
exp) 

True 

Table 6: Shows the details about predicate nodes appearing 
in each independent path 

3

5 

 
5t 5

5 

4

5 

2

5 

1 5

5 

 
5s 5

5 

Non-
traversed 

path(s) 

Test 
case(s) 

Predicate 
nodes in 

non-
traversed 

path 

Required 
test 

conditio
n at non-
traverse
d path 

predicat
e nodes 

Test 
condition 

at 
predicate 
nodes as 
satisfied 
by test 
case 

Number of 
matched 

conditions 

P2 
 

T1 
n1 False False 

1 
n3 True False 

T2 
n1 False True 

0 
n3 True False 

 



INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06                      89 
ISSN 2347-4289 

Copyright © 2015 IJTEEE. 
 

Given input test cases 
T1: {exp=0} 
T2: {exp=1} 
T3: {exp=-5} 
 

Each test case Tj, is represented as a binary sequence of 
nodes appearing in the path traversed by it. Thus, each test 
case is represented as a binary sequence containing [n1 n2 n3 
n4 ]. 

 

Test 
case 
No.  

Test 
Case 

Predicate 
node(s) in 
flow 
graph 

Test 
Condition 
at 
predicate 
node 

Boolean 
value at 
predicate 
node 

T1 {exp=0} n1 
i > 0  

(initially i = 
exp) 

False 

T2 {exp=1} n1 
i > 0  

(initially i = 
exp) 

True 

T3 {exp=-5} n1 
i > 0  

(initially i = 
exp) 

False 

 

Table 7: Shows the Boolean value of predicate nodes for the 
given test case(s) 

 
Each test case Tj, is represented as a binary sequence of 
nodes appearing in the path traversed by it. Thus, each test 
case is represented as a binary sequence containing [n1 n2 n3 
n4] by traversing the flow graph (Figure 2) and using the infor-
mation given in table 5 and 7. 
 

Test T1 is equivalent to [ 1 1 0 1 ] 
Test T2 is equivalent to [ 1 1 1 1 ] 
Test T3 is equivalent to [ 1 1 0 1 ] 
 

Compute Rji= ij [Tj XNOR Pi ], i.e., 
 
T1XNOR P1=[ 1 1 0 1 ] XNOR [ 1 1 0 1 ] = [ 1 1 1 1 ] 
T1XNOR P2= [ 1 1 0 1 ] XNOR [ 1 1 1 1 ] = [ 1 1 0 1 ] 

T2 XNOR P1= [ 1 1 1 1 ]XNOR [ 1 1 0 1 ] = [ 1 1 0 1 ] 
T2 XNOR P2=[ 1 1 1 1 ] XNOR [ 1 1 1 1 ] = [ 1 1 1 1 ] 
T3 XNOR P1=[ 1 1 0 1 ] XNOR [ 1 1 0 1 ] = [ 1 1 1 1 ] 
T3 XNOR P2= [ 1 1 0 1 ] XNOR [ 1 1 1 1 ] = [ 1 1 0 1 ] 

 
Now, a test case Tj is selected corresponding to path Pi that 
contains all 1’s in resultant row. So, in final test suite, test case 
T1 and T3 is selected corresponding to path P1 and test caseT2 

is selected corresponding to path P2. It is analyzed that there 
is two test cases corresponding to path P1. According to Rule 
1 either of the two test cases T1 or T3 is selected in final test 
suite to minimize the size of final test suite. Hence, two test 
cases T1 : {exp=0} for path P1, T2 : {exp=1} for path P2 are re-
quired to test all the independent paths of the above problem. 
 
EXAMPLE 3 

Consider the source code given below 
start int largest(int x, int y, int z) 

{ 
1 if (x > y)     
2 if (x > z)     

3 return x;     
4 else 
5 return z;      
6 else if (y > z)      
7 return y;     
8 else 
9 return z;     

  
 stop   } 

 
Given source code is represented as control flow graph as 
shown in figure 3. 
 
                           
                                     start 
 
 
                                    (x>y) ?   
            
              false                  true 
                                         
(y>z)?                                          (x>z) ? 
                        
  false               true    false                true 
 
 
 
                     
        
 
 
 
 
 
                 
                      stop 
 

Figure 3: Control flow graph of example 3 

 

Node No. 
Test Condition 
at predicate 
node 

n1 x > y 

n2 x > z 

n5 y > z 

 
Table 8: Shows the predicate nodes in the flow graph and the 

condition at each predicate node 
 
On applying cyclomatic complexity technique,  

 
No. of independent paths = no of predicate nodes + 1 

                             = 3+1 = 4 
 

Independent paths are 
(Path 01)P1= [ start n1 n2 n3 stop ] 
(Path 02)P2= [ start n1 n2 n4 stop] 
(Path 03)P3= [ start n1 n5 n6 Stop ]  
(Path 04)P4= [ start n1 n5 n7 Stop ]  
 

There is a total of 7 nodes from n1 to n7 (excluding the Start 
and Stop node). Each path is represented as a binary se-
quence of nodes [ n1 n2 n3 n4 n5 n6 n7] showing 1 against tra-

t
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versed node and 0 against untraversed node in corresponding 
path. 
 
Thus,  

Path P1 is equivalent to [ 1 1 1 0 0 0 0 ] 
Path P2 is equivalent to [ 1 0 0 1 0 0 0 ] 
Path P3 is equivalent to [ 1 0 0 0 1 1 0 ] 
Path P4 is equivalent to [ 1 0 0 0 0 0 1 ] 
 

Path 
No.  

Path  
Node 
Binary 
sequence 

Predicate 
node(s) 
in given 
path 

Test 
Condition 
at 
predicate 
node 

Boolean 
value at 
predicate 
node 

P1 
[ n1 n2 n3 ] 
[1 1 1 0 0 
0 0] 

n1 x > y True 

n2 x > z True 

P2 
[ n1 n2 n4 ] 
[1 0 0 1 0 
0 0] 

n1 x > y True 

n2 x > z False 

P3 
[ n1 n5 n6 ] 
[1 0 0 0 1 
1 0] 

n1 x > y False 

n5 y > z True 

P4 
[ n1 n5 n7 ] 
[1 0 0 0 1 
0 1] 

n1 x > y False 

n5 y > z False 

 

Table 9: Shows the details about predicate nodes appearing 
in each independent path 

 
Given input test cases 
T1: {x=5, y=2, z=4} 
T2: {x=2, y=7, z=9} 
T3: {x=2, y=7, z=4} 
T4: {x=2, y=7, z=1} 

 

Test 
case 
No.  

Test 
Case 

Predicate 
node(s) 
in flow 
graph 

Test 
Condition 
at 
predicate 
node 

Boolean 
value at 
predicate 
node 

T1 
{x=5, 
y=2, 
z=4} 

n1 x > y True 

n2 x > z True 

n5 y > z False 

T2 
{x=2, 
y=7, 
z=9} 

n1 x > y False 

n2 x > z False 

n5 y > z False 

T3 
{x=2, 
y=7, 
z=4} 

n1 x > y False 

n2 x > z False 

n5 y > z True 

T4 
{x=2, 
y=7, 
z=1} 

n1 x > y False 

n2 x > z True 

n5 y > z True 
 

Table 10: Shows the Boolean value of predicate nodes for the 
given test case(s) 

 
Each test case Tj, is represented as a binary sequence of 
nodes appearing in the path traversed by it. Thus, each test 
case is represented as a binary sequence containing [n1 n2 n3 
n4 n5 n6 n7] by traversing the flow graph (Figure 3) and using 
the information given in table 8 and 10. 
  

Test T1 is equivalent to [ 1 1 1 0 1 0 1 ] 
Test T2 is equivalent to [ 1 0 0 0 1 0 1 ] 
Test T3 is equivalent to [ 1 0 0 0 1 1 0 ] 
Test T4 is equivalent to [ 1 0 0 0 1 1 0 ] 
 

Compute Rji= ij [Tj XNOR Pi ], i.e., 
 
T1XNOR P1 

=[1 1 1 0 0 0 0] XNOR [1 1 1 0 0 0 0]=[ 1 1 1 1 1 1 1 ] 
 

T1XNOR P2 

= [1 1 1 0 0 0 0] XNOR [1 0 0 1 0 0 0]=[ 1 0 0 0 1 1 1 ] 

 

T1 XNOR P3 

= [1 1 1 0 0 0 0] XNOR [1 0 0 0 1 1 0] = [ 1 0 0 1 0 0 1 ] 
 
T1 XNOR P4 

= [1 1 1 0 0 0 0] XNOR [1 0 0 0 1 0 1] = [ 1 0 0 1 0 1 0 ] 

 

T2 XNOR P1 

= [1 0 0 0 1 0 1] XNOR [1 1 1 0 0 0 0] = [ 1 1 1 1 1 1 1 ] 
 
T2 XNOR P2 

= [1 0 0 0 1 0 1] XNOR [1 0 0 1 0 0 0] = [ 1 1 1 0 0 1 0 ] 
 
T2 XNOR P3 

= [1 0 0 0 1 0 1] XNOR [1 0 0 0 1 1 0] = [ 1 1 1 1 1 0 0 ] 
 
T2 XNOR P4 

= [1 0 0 0 1 0 1] XNOR [1 0 0 0 1 0 1] = [ 1 1 1 1 1 1 1 ] 
 
T3 XNOR P1 

= [1 0 0 0 1 1 0] XNOR [1 1 1 0 0 0 0] = [ 1 0 0 1 0 0 1] 
 
T3 XNOR P2 

= [1 0 0 0 1 1 0] XNOR [1 0 0 1 0 0 0] = [ 1 1 1 0 0 0 1] 
 
T3 XNOR P3 

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 1 0]= [ 1 1 1 1 1 1 1 ] 
 
T3 XNOR P4 

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 0 1] = [  1 1 1 1 1 0 0] 
 
T4 XNOR P1 

= [1 0 0 0 1 1 0] XNOR [1 1 1 0 0 0 0] = [ 1 0 0 1 0 0 1] 
 
T4 XNOR P2 

= [1 0 0 0 1 1 0] XNOR [1 0 0 1 0 0 0] = [ 1 1 1 0 0 0 1] 
 
T4 XNOR P3 

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 1 0] = [ 1 1 1 1 1 1 1] 
 
T4 XNOR P4 

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 0 1] = [ 1 1 1 1 1 0 0 ] 
 
Now, a test case Tj is selected corresponding to path Pi that 
contains all 1’s in resultant row. So, in final test suite, test case 
T1 is selected corresponding to path P1 and test caseT2 is se-
lected corresponding to path P4 and test case T3 or T3 can be 
selected corresponding to path P3. It is analyzed that there is 
no test case corresponding to path P2. Next step is to design 
new test case from the given test suite for non-traversed path 
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P2. Genetic algorithm is applied to design the new test case for 
path P2. Steps for the genetic algorithm are: 
 
1. Selection  
Test cases are selected from the given population (test suite) 
that matches maximum number of boolean values of predi-
cate nodes in the non-traversed path P2.  

 
Using Tables 2 and 3, following observation is recorded: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11: Shows test case matching to missed path 
 

As test cases T1 , T2 and T3 matches single test condition each 
of P2 non-traversed path, so T1 , T2 and T3 test cases are se-
lected for designing new test case for path P2. Now, next step 
is to mutate the test cases so that mutant test case will satisfy 
all the test conditions of non-traversed path . 
 
2. Fitness function 

Compute Ri= i [Tj XNOR P2 ]  , i=1,2,3 
Select the test case Ti corresponding to path P2 that 
contains all 1’s in resultant row.  

 
3. CrossOver 
Test case T1{ x=5, y=2, z=4} matches the required predicate 
condition (true) at node n1 (x > y), test case T2{ x=2, y=7, z=9} 
and T3 {x=2, y=7, z=4}matches the required predicate condi-
tion (false) at node n2 (x > z). Since both the predicate condi-
tions n1 and n2 are not being satisfied by any single selected 
chromosome, hence existing chromosomes T1 and T2 or T3 
are crossover to create new chromosome satisfying both the 
required predicate conditions. 

 
T1: {x=5, y=2, z=4} 
T2: {x=2, y=7, z=9} 

 
Predicate condition at node n1 = (x > y) and at node n2  = (x > 
z). Since gene x is common in both conditions, it is selected 
for single arithmetic crossover. Initially, α is chosen as 0.5 
randomly. 

 
Child1 is {α.x1 + [1- α].x2, y1, z1} 
Child2 is {[1- α]. x1 + α.x2, y2, z2} 
  
Child1 is {x=3.5,y=2,z=4} 
Child2 is {x=3.5,y=7,z=9} 

Non-
traversed 

path(s) 

Test 
case(s) 

Predicate 
nodes in 

non-
traversed 

path 

Required 
test 

condition 
at non-

traversed 
path 

predicate 
nodes 

Test 
condition 

at 
predicate 
nodes as 
satisfied 
by test 
case 

Number of 
matched 

conditions 

P2 
 

child1 
n1 True True 

2 
n2 False  False 

child2 
n1 True False 1 

 n2 False  False 
 

Table 12: Shows new test case matching missed path 
 
Since both the predicate conditions n1 and n2 are being satis-
fied by single child chromosome child1 , so test case child1 is 
selected corresponding to path P2 in final test suite. Hence, 
test cases T1 : {x=5, y=2, z=4} for path P1, T2 : {x=2, y=7, z=9} 
for path P4 , T3 : { x=2, y=7, z=4} for path P3 and new test case 
child1 : { x=3.5,y=2,z=4} for path P2 are required to test all the 
independent paths of the above problem. 
 

5. CONCLUSION AND FUTURE SCOPE 
In the paper, Genetic algorithm has been used to search the 
input domain of the subject program for suitable test cases. 
Guidance is provided by the fitness function which assigns a 
non-negative value to each candidate input test case. A test 
case that matches the maximum predicate nodes in the path is 
selected for the next generation. But, there are certain limita-
tions of the proposed method. 

 Testing all the paths does not mean that all bugs in a 
program are found. Bugs may be due to missing 
statements in the code, so there are no paths to ex-
ecute.  

 Some bugs are related to the order in which code 
segments are executed.  

 Also it is practically impossible to test all program 
paths (e.g., loops).  

 Nested conditions in the path are handled in simplified 
way. 

 
In future, efforts will be made to overcome the above men-
tioned limitations and hence improve the proposed algorithm. 
Also more case studies containing complex source code will 
be considered to measure the efficiency of the proposed me-
thod. 
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