
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 84
ISSN 2347-4289

Copyright © 2015 IJTEEE.

Genemutant: Test Suite Adequacy Check For
Path Coverage Testing Based On Mutating Test
Suite Using Genetic Algorithm

Dr Namita Gupta

Computer Science and Engineering Department, Maharaja Agrasen Institute of Technology, Rohini, Delhi, India
Email: namita@mait.ac.in

ABSTRACT: Code coverage is a measure used to describe the degree to which the source code of a program is tested by a particular test suite. A
program with high code coverage has been more thoroughly tested and has a lower chance of containing software bugs than a program with low code
coverage. Many different metrics can be used to calculate code coverage like statement coverage, decision coverage, condition coverage, path
coverage etc. Path coverage ensures that every independent path in the program should be executed at least once by the give test suite. The proposed
technique check the adequacy of given test suite and design new test cases (if required) by mutating the existing test cases, for path coverage testing
based on genetic algorithm using XNOR fitness function.

Keywords : Genetic algorithm, Mutation testing, Path testing

1. INTRODUCTION
Software testing is done to detect the faults in the given source
code. Test cases are developed to test the software. Static and
dynamic testing techniques are available to test the software.
Static testing techniques analyze the target software without
actually executing the code to identify the errors. Dynamic
testing executes the code using given test cases to detect
presence of faults. Mutation testing also called Mutation analy-
sis or Program mutation is the testing technique, used to eva-
luate the quality of existing software test suite and design new
test cases. Mutation testing involves modifying a program's
source code. Each mutated version is called a mutant and
tests detect and reject mutants if the behavior of the original
version of the source code differs from the mutant. This is
called killing the mutant. Test suites are measured by the per-
centage of mutants that they kill. New tests can be designed to
kill additional mutants. The purpose is to help the tester devel-
op effective tests or locate weaknesses in the given test data
used for the program or in sections of the code that are sel-
dom or never accessed during execution. Mutants are created
based on mutation. Many mutation operators have been ex-
plored by researchers. Here are some examples of mutation
operators for imperative languages:

 Statement deletion.

 Replace boolean expression with true or false.

 Replace arithmetic operator with another, e.g. + with *, -
and /.

 Replace relational operator with another, e.g. > with >=,
== and <=.

 Replace variable with another variable declared in the
same scope (variable types must be compatible).

Adequacy of the given test suite is evaluated through mutation
score defined as:
mutation score
= number of mutants killed / total number of mutants (1)

Although powerful, Mutation Testing is complicated and time-
consuming to perform without an automated tool. Efficiency of
the technique depends on the number of mutants created.
Few mutants may miss some areas of programs to test if the
corresponding test case is missing in the give test suite. Too

many mutants increase overhead and technique complexity.
To check the adequacy of test suite efficiently and to design
new test cases, a new technique is proposed. Instead of mod-
ifying the source code to create new mutants, test case is mu-
tated i.e., an input value of the single variable in the given test
case is changed to satisfy the given condition at the predicate
node. The proposed algorithm is based on Path testing. The
objective of path testing is to ensure that each possible inde-
pendent path through the program is executed at least once.
An independent program path is one that traverses at least
one new edge in the flow graph. In program terms, this means
exercising one or more new conditions. Both the true and false
branches of all conditions must be executed. The starting point
for path testing is a program flow graph. A flow graph consists
of nodes representing decisions and edges showing flow of
control. The flow graph is constructed by replacing program
control statements by equivalent diagrams. Each branch in a
conditional statement (if-then-else or case) is shown as a sep-
arate path. An arrow looping back to the condition node de-
notes a loop. Each statement in the program graph is
represented as a separate node where the node number cor-
responds to the line number in the program. To reduce the
complexity of program graph, control flow graph is created
where sequential nodes are replaced by single node. Control
graph contain following different types of nodes:

i. Starting Node / Initial Node
ii. Terminating Node / Stop Node / End Node

iii. Sequential Node
iv. Predicate/Decision Node
v. Junction Node

Path testing ensures that every path through a program has
been executed at least once. If all of these paths are executed
we can be sure that every statement in the method has been
executed at least once and that every branch has been exer-
cised for true and false conditions. The number of tests that
are required to ensure that all paths through the program are
exercised is the same as the cyclomatic complexity of the
code fragment that is being tested. To evaluate the adequacy
of the given test suite and to design new test cases, our pro-
posed algorithm uses genetic algorithm discussed below.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 85
ISSN 2347-4289

Copyright © 2015 IJTEEE.

1.1 GENETIC ALGORITHM
Genetic algorithm starts with initial pool of chromosomes and
attempts to improve the set by evolution [1][2]. It typically has
five parts:
1) a representation of a chromosome - . A chromosome can

be a binary string or a more elaborate data structure.
2) an initial pool of chromosomes - It can be randomly pro-

duced or manually created.
3) a fitness function - The fitness function measures the sui-

tability of a chromosome to meet a specified objective
i.e., a chromosome is fitter if it corresponds to greater
coverage.

4) a selection function - The selection function decides
which chromosomes will participate in the evolution stage
of the genetic algorithm made up by the crossover and
mutation operators.

5) a crossover operator and a mutation operator - The cros-
sover operator exchanges genes from two chromosomes
and creates two new chromosomes. The mutation opera-
tor changes a gene in a chromosome and creates one
new chromosome.

Basic algorithm for a Genetic Algorithm [3] follows well-defined
steps:

initialize (population)
evaluate (population)
while (stopping condition not satisfied) do
{

selection (population)
crossover (population)
mutate (population)
evaluate (population)

}

The algorithm will iterate until the population has evolved to
form a solution to the problem (sufficient test cases), or until a
maximum number of iterations have taken place (suggesting
that a solution is not going to be found given the resources
available). In this paper, we discussed the proposed GENEmu-
tant algorithm for path testing. To evaluate the effectiveness of
given test suite and identify the section of codes not covered
by the given test cases, proposed method applies genetic al-
gorithm based on f(XNOR) fitness function.

2. RELATED WORK
Many researchers have proposed the application of genetic
algorithm in different areas of software testing. Riccardo and
Langdon [4] described two forms of crossover, one-point cros-
sover and the new strict one-point crossover. Strict one-point
crossover, behaves exactly like one-point crossover except
that the crossover point can be located only in the parts of the
two trees which have exactly the same structure (i.e. the same
functions in the nodes encountered traversing the trees from
the root node). Sean and Lee [5] showed that crossover is
better over mutation given the right parameter settings (primar-
ily larger population sizes). It is observed that mutation is more
successful in smaller populations, and crossover is more suc-
cessful in larger populations. Leonardo [6] proposed a fitness
function that incorporates the three basic conditions required
by a test case to kill a given mutant of some subject program.
Method uses genetic algorithm to search for test cases that
satisfy the reachability condition. The proposed fitness function
has been implemented, together with a genetic algorithm and

mutation analysis tool. Tzung-pei et al. [7] proposed a new
genetic algorithm, the dynamic genetic algorithm (DGA). DGA
simultaneously uses more than one crossover and mutation
operators to generate the next generation. In the next genera-
tion, the ratios of crossover and mutation change along with
the evaluation results of the respective offspring. Maria and
Silvia [8] designed GPTesT, a testing tool based on Genetic
Programming. Fault-based testing criteria generally derive test
data using a set of mutant operators to produce alternatives
that differ from the program under testing by a simple modifi-
cation. GPTesT uses a set of alternatives genetically derived,
which allow the test of interactions between faults. GPTesT
implements two test procedures respectively for guiding the
selection and evaluation of test data sets. Wen-Yang et al. [9]
showed that the probabilities of crossover and mutation are
critical to the success of genetic algorithms. A generic scheme
for adapting the crossover and mutation probabilities in re-
sponse to the evaluation results of the respective offspring in
the next generation is proposed. Abdelaziz et al. [10] pre-
sented a new general technique that combines the concept of
spanning set with a genetic algorithm to automatically gener-
ate test data for spanning set coverage. Lawrence and Colin
[11] present a semantically driven mutation (SDM) technique
which is used to improve the mutation operation in genetic
programming (GP). The SDM algorithm has been developed
based on semantic analysis of the changes caused by the
mutation operator. The SDM algorithm works to improve per-
formance by not allowing mutated programs to be produced
when they are behaviorally equivalent to the original program,
but it also avoid returning to sections of the search space that
have effectively already been traversed. William et al. [12]
used a multi objective Pareto optimal genetic programming
approach to explore the relationship between mutant syntax
and mutant semantics with respect to given test sets. The GP
algorithm evolves mutant programs according to two fitness
functions: semantic difference and syntactic difference. Syn-
tactic distance sums the number of changes weighted by the
actual difference. Semantic distance is measured as the num-
ber of test cases for which a mutant and original program be-
have differently. Wang [13] proposed a genetic algorithm
based test case prioritization algorithm. Prenal and Kale. [14]
discussed the use of genetic algorithms to automatically gen-
erate test cases for path testing. Each iteration of the genetic
algorithms generates a generation of individuals. But some-
times, solution derived may be trapped around a local opti-
mum and as a result fail to locate required global optimum.
Timo [15] analysed the importance of mutation in genetic pro-
gramming, and reveal new insights into the behavior of muta-
tion-based genetic programming algorithms. Chayanika et al.
[16] discussed the application of genetic algorithm in different
areas of software testing like white box testing (data flow test-
ing, path testing), black box testing (mutation testing, regres-
sion testingGUI testing) etc. Authors of the paper found that by
using Genetic Algorithm, the results and the performance of
testing can be improved. To conclude, the use of a genetic
algorithm to search for test cases that satisfy the reachability
condition is not new. The attempt to incorporate necessity and
sufficiency conditions is more innovative. In the proposed me-
thod, given subject program is not mutated but test cases are
mutated and crossover using genetic algorithm based on the
selection criteria as determined by the proposed fitness func-
tion to search the test cases satisfying path testing. The struc-
ture of the paper is organized as follows. In Section 3, the pro-

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 86
ISSN 2347-4289

Copyright © 2015 IJTEEE.

posed algorithm is discussed; case studies based on pro-
posed method are discussed in section 4. We conclude in sec-
tion 5.

3. PROPOSED ALGORITHM - GENEMUTANT
For the given source code, cyclomatic complexity technique is
used to find all possible independent paths. Test suite is then
used to identify the paths covered by the given test. Each in-
dependent path is represented as a binary sequence showing
1 if node is present in the path and 0 if node is absent. Thus,
each path Pi is represented as a binary sequence containing
nodes [n1 n2…… nk], where k is the total no. of nodes in flow
graph. Likewise, for each given test case Tj, identify the binary
sequence of nodes appearing in the path traversed by it and
represent the same as [n1 n2 …… nk]. Next step is to select
the test case for each independent path from the given test
pool and design new test case(s) for non-traversed path(s).
Genetic algorithm is applied to select/design the test cases.
Steps for the genetic algorithm are:

1. Fitness Function

Compute Rji= ij [Tj XNOR Pi] (2)
such that,

function

(3)

i.e., (0 XNOR 1) is 0
 (1 XNOR 0) is 0
 (0 XNOR 0) is 1
 (1 XNOR 1) is 1

A test case Tj is fitted for path Pi if it contains all 1’s in resul-
tant row after applying between them. To avoid re-

dundancy among test cases and minimize the number of test
cases, the following rules should be followed:

Rule 1 : If more than one test case traverses the same
path, then randomly select single test case for final test
suite.
Rule 2 : If a test case traverses more than two independent
paths, then preference should be given to such test case
over others while selecting the test case for Rule 1.

2. Selection
The selection procedure selects individuals of the current popu-
lation for development of the next generation. Various alterna-
tive methods exist but all follow the idea that the fittest have a
greater chance of survival. Selection chooses the chromo-
somes to be recombined and mutated out of this initial popula-
tion. [n.gupta] Identify the non-zero predicate nodes np in the
non-traversed path nodes sequence. If, the immediate next
node nx is not a predicate node then,

If nx = (4)

If nx is a predicate node then,

If nx = (5)

Check the condition at the predicate nodes in the non-
traversed path. Match within the selected chromosomes (test
case) that satisfy the give condition(s). Test cases that match
maximum number of Boolean values of predicate nodes in the
non-traversed path are selected to have their solution passed
onto the next generation.

3. Crossover
Selected chromosomes are crossover to create next genera-
tion. It combines two chromosomes (parents) to produce a
new chromosome (child). The new chromosome takes the
best characteristics from each of the parents. One point, two
points, uniform, arithmetic are few crossover operators [9]. In
GENEmutant algorithm, arithmetic operator is used. Arithmetic
operator linearly combines two parent chromosome vectors to
produce two new children according to the following equa-
tions:

Child1 = a * parent1 + (1-a) * parent2 (6)
Child2 = (1-a) * parent1 + a * parent2 (7)

where a is a random weighting factor between 0 and 1, cho-
sen before each crossover operation. Take a = 0.5 initially and
then increase or decrease its value based on the results ob-
tained.

4. Mutation
Even though the crossover produces a large range of solutions,
it may lead the evaluation function towards local maxima. The
purpose of mutation in Genetic algorithm is preserving and
introducing diversity. For different genome types, different mu-
tation types are available [9] like flip bit, Gaussian, insert, swap,
inversion, scramble mutation etc. In GENEmutant algorithm, if
the predicate condition is not satisfied by the selected chromo-
somes after multiple crossover iterations, then existing chromo-
some is mutated based on the predicate condition.

4. CASE STUDY
In this preliminary study, we used our proposed algorithm on
three moderately-sized programs.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 87
ISSN 2347-4289

Copyright © 2015 IJTEEE.

EXAMPLE 1
Consider the source code given below

start int isabsequal(int x, int y)
{

1 if (x==y)
2 return 1;
3 else if (x==-4)
4 return -1;
5 Else
6 return 0;
stop }

Given source code is represented as control flow graph shown
as figure 1 below.

 start

 (x==y) ?

 true false

 (x==-y) ?

 true false

 stop

Figure 1: Control flow graph of example 1

Node No.
Test Condition
at predicate
node

n1 x == y

n3 x == -4

Table 1 : Shows the predicate nodes in the flow graph and the
condition at each predicate node

On applying cyclomatic complexity technique,

No. of independent paths = no of predicate nodes + 1
 = 2+1 = 3
Independent paths are
(Path 01)P1= [start n1 n2 stop]
(Path 02)P2= [start n1 n3 n4 stop]
(Path 03)P3= [start n1 n3 n5 n6 Stop]

There is a total of 6 nodes from n1 to n6 (excluding the Start
and Stop node). Each path is represented as a binary se-
quence of nodes [n1 n2 n3 n4 n5 n6] showing 1 against tra-
versed node and 0 against untraversed node in corresponding
path.
Thus,

Path P1 is equivalent to [1 1 0 0 0 0]
Path P2 is equivalent to [1 0 1 1 0 0]
Path P3 is equivalent to [1 0 1 0 1 1]

Path
No.

Path
Node
Binary
sequence

Predicate
node(s) in
given path

Test
Condition
at
predicate
node

Boolean
value at
predicate
node

P1
[n1 n2]
[1 1 0 0 0
0]

n1 x == y True

P2
[n1 n3 n4]
[1 0 1 1 0
0]

n1 x == y False

n3 x == -4 True

P3

[n1 n3 n5 n6

]
[1 0 1 0 1
1]

n1 x == y False

n3 x == -4 False

Table 2: Shows the details about predicate nodes appearing
in each independent path

Given input test cases
T1: {x=5, y=3}
T2: {x=9, y=9}

Test
case
No.

Test
Case

Predicate
node(s) in
flow graph

Test
Condition at

predicate
node

Boolean
value at

predicate
node

T1
{x=5,
y=3}

n1 x == y False

n3 x == -4 False

T2
{x=9,
y=9}

n1 x == y True

n3 x == -4 False

Table 3: Shows the Boolean value of predicate nodes for the
given test case(s)

Each test case Tj, is represented as a binary sequence of
nodes appearing in the path traversed by it. Thus, each test
case is represented as a binary sequence containing [n1 n2 n3
n4 n5] by traversing the flow graph (Figure 1) and using the
information given in table 1 and 3.

Test T1 is equivalent to [1 0 1 0 1 1]

Test T2 is equivalent to [1 1 0 0 0 0]

Compute Rji= ij [Tj XNOR Pi], i.e.,

T1XNOR P1=[1 0 1 0 1 1] XNOR [1 1 0 0 0 0]= [1 0 0 1 0 0]

T1XNOR P2=[1 0 1 0 1 1] XNOR [1 0 1 1 0 0]= [1 1 1 0 0 0]

T1 XNOR P3=[1 0 1 0 1 1] XNOR [1 0 1 0 1 1] = [1 1 1 1 11]

T2 XNOR P1= [1 1 0 0 0 0] XNOR [1 1 0 0 0 0] = [1 1 1 1 11]

T2 XNOR P2=[1 1 0 0 0 0] XNOR [1 0 1 1 0 0]= [1 0 0 0 1 1]

T2 XNOR P3=[1 1 0 0 0 0] XNOR [1 0 1 0 1 1]= [1 0 0 1 0 0]

Now, a test case Tj is selected corresponding to path Pi that
contains all 1’s in resultant row.

55 5

5

3

5

4

5

t

5

2

5

1 5

5

5s 5

5

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 88
ISSN 2347-4289

Copyright © 2015 IJTEEE.

So, in final test suite, test case T1 is selected corresponding to
path P3 and test caseT2 is selected corresponding to path P1. It
is analyzed that there is no test case corresponding to path P2.
Next step is to design new test case from the given test suite.
Genetic algorithm is applied to design the new test case for
path P2. Steps for the genetic algorithm are:

1. Selection
Test cases are selected from the given population (test suite)
that matches maximum number of boolean values of predi-
cate nodes in the non-traversed path P2.

Using Tables 2 and 3, following observation is recorded:

Table 4: Shows test case matching to missed path

As test case T1 matches one test condition of P2 non-traversed
path, so only test case T1 is selected for designing new test
case for path P2. Now, next step is to mutate the test case so
that it will satisfy all the test conditions of non-traversed path.

2. Mutation

Test case T1{x=5, y=3} matches the required predicate condi-
tion at node n1(x==y), but violates the predicate condition at
node n3 (x==-4). If the predicate condition is not satisfied by
the selected chromosomes, then existing chromosome is mu-
tated based on the predicate condition. Hence chromosome T1
is mutated as {x=-4, y=3}. Now both the conditions at the pre-
dicate nodes are satisfied and mutated test case successfully
traverse path P2. Hence, three test cases T1 : {x=5, y=3} for
path P3, T2 : {x=9, y=9} for path P1 and new test case T3 : {x=-
4, y=3} for path P2 are required to test all the independent
paths of the above problem.

EXAMPLE 2
Consider the source code given below

start int product (int exp)
{

1 int i = exp;
2 int j = 1;
3 while (i > 0) {
4 j = 2*j;
a. 5 i--; }
5 return j;

 stop }

 start

 (i>0) ?

 true

 false

Figure 2: Control flow graph of example 2

Node
No.

Test Condition at predicate
node

n2 i > 0 (initially i = exp)

Table 5 : Shows the predicate node(s) in the flow graph and

the condition at predicate node

On applying cyclomatic complexity technique,

No. of independent paths
= no of predicate nodes + 1
 = 1+1 = 2

Independent paths are
(Path 01) P1= [start 1 2 4 stop]
(Path 02) P2= [start 1 2 3 ((2 3)) 4 stop]
((2 3)) shows n iterations of loop.

There is a total of 4 nodes from n1 to n4 (excluding the Start
and Stop node). Each path is represented as a binary se-
quence of nodes [n1 n2 n3 n4] showing 1 against traversed
node and 0 against untraversed node in corresponding path.
Thus,

Path P1 is equivalent to [1 1 0 1]
Path P2 is equivalent to [1 1 1 1]

Path
No.

Path
Node
Binary
sequence

Predicate
node(s) in
given path

Test
Condition
at predicate
node

Boolean
value at
predicate
node

P1
[n1 n2 n4]
[1 1 0 1]

n1
i > 0

(initially i =
exp)

False

P2
[n1 n2 n3 n4]
[1 1 1 1]

n1
i > 0

(initially i =
exp)

True

Table 6: Shows the details about predicate nodes appearing
in each independent path

3

5

5t 5

5

4

5

2

5

1 5

5

5s 5

5

Non-
traversed

path(s)

Test
case(s)

Predicate
nodes in

non-
traversed

path

Required
test

conditio
n at non-
traverse
d path

predicat
e nodes

Test
condition

at
predicate
nodes as
satisfied
by test
case

Number of
matched

conditions

P2

T1
n1 False False

1
n3 True False

T2
n1 False True

0
n3 True False

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 89
ISSN 2347-4289

Copyright © 2015 IJTEEE.

Given input test cases
T1: {exp=0}
T2: {exp=1}
T3: {exp=-5}

Each test case Tj, is represented as a binary sequence of
nodes appearing in the path traversed by it. Thus, each test
case is represented as a binary sequence containing [n1 n2 n3
n4].

Test
case
No.

Test
Case

Predicate
node(s) in
flow
graph

Test
Condition
at
predicate
node

Boolean
value at
predicate
node

T1 {exp=0} n1
i > 0

(initially i =
exp)

False

T2 {exp=1} n1
i > 0

(initially i =
exp)

True

T3 {exp=-5} n1
i > 0

(initially i =
exp)

False

Table 7: Shows the Boolean value of predicate nodes for the
given test case(s)

Each test case Tj, is represented as a binary sequence of
nodes appearing in the path traversed by it. Thus, each test
case is represented as a binary sequence containing [n1 n2 n3
n4] by traversing the flow graph (Figure 2) and using the infor-
mation given in table 5 and 7.

Test T1 is equivalent to [1 1 0 1]
Test T2 is equivalent to [1 1 1 1]
Test T3 is equivalent to [1 1 0 1]

Compute Rji= ij [Tj XNOR Pi], i.e.,

T1XNOR P1=[1 1 0 1] XNOR [1 1 0 1] = [1 1 1 1]
T1XNOR P2= [1 1 0 1] XNOR [1 1 1 1] = [1 1 0 1]

T2 XNOR P1= [1 1 1 1]XNOR [1 1 0 1] = [1 1 0 1]
T2 XNOR P2=[1 1 1 1] XNOR [1 1 1 1] = [1 1 1 1]
T3 XNOR P1=[1 1 0 1] XNOR [1 1 0 1] = [1 1 1 1]
T3 XNOR P2= [1 1 0 1] XNOR [1 1 1 1] = [1 1 0 1]

Now, a test case Tj is selected corresponding to path Pi that
contains all 1’s in resultant row. So, in final test suite, test case
T1 and T3 is selected corresponding to path P1 and test caseT2

is selected corresponding to path P2. It is analyzed that there
is two test cases corresponding to path P1. According to Rule
1 either of the two test cases T1 or T3 is selected in final test
suite to minimize the size of final test suite. Hence, two test
cases T1 : {exp=0} for path P1, T2 : {exp=1} for path P2 are re-
quired to test all the independent paths of the above problem.

EXAMPLE 3

Consider the source code given below
start int largest(int x, int y, int z)

{
1 if (x > y)
2 if (x > z)

3 return x;
4 else
5 return z;
6 else if (y > z)
7 return y;
8 else
9 return z;

 stop }

Given source code is represented as control flow graph as
shown in figure 3.

 start

 (x>y) ?

 false true

(y>z)? (x>z) ?

 false true false true

 stop

Figure 3: Control flow graph of example 3

Node No.
Test Condition
at predicate
node

n1 x > y

n2 x > z

n5 y > z

Table 8: Shows the predicate nodes in the flow graph and the

condition at each predicate node

On applying cyclomatic complexity technique,

No. of independent paths = no of predicate nodes + 1

 = 3+1 = 4

Independent paths are
(Path 01)P1= [start n1 n2 n3 stop]
(Path 02)P2= [start n1 n2 n4 stop]
(Path 03)P3= [start n1 n5 n6 Stop]
(Path 04)P4= [start n1 n5 n7 Stop]

There is a total of 7 nodes from n1 to n7 (excluding the Start
and Stop node). Each path is represented as a binary se-
quence of nodes [n1 n2 n3 n4 n5 n6 n7] showing 1 against tra-

t

5

53 5

5

2

5

4

5

5

5

1 5

5

5s 5

5

6

5
7

5

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 90
ISSN 2347-4289

Copyright © 2015 IJTEEE.

versed node and 0 against untraversed node in corresponding
path.

Thus,

Path P1 is equivalent to [1 1 1 0 0 0 0]
Path P2 is equivalent to [1 0 0 1 0 0 0]
Path P3 is equivalent to [1 0 0 0 1 1 0]
Path P4 is equivalent to [1 0 0 0 0 0 1]

Path
No.

Path
Node
Binary
sequence

Predicate
node(s)
in given
path

Test
Condition
at
predicate
node

Boolean
value at
predicate
node

P1
[n1 n2 n3]
[1 1 1 0 0
0 0]

n1 x > y True

n2 x > z True

P2
[n1 n2 n4]
[1 0 0 1 0
0 0]

n1 x > y True

n2 x > z False

P3
[n1 n5 n6]
[1 0 0 0 1
1 0]

n1 x > y False

n5 y > z True

P4
[n1 n5 n7]
[1 0 0 0 1
0 1]

n1 x > y False

n5 y > z False

Table 9: Shows the details about predicate nodes appearing
in each independent path

Given input test cases
T1: {x=5, y=2, z=4}
T2: {x=2, y=7, z=9}
T3: {x=2, y=7, z=4}
T4: {x=2, y=7, z=1}

Test
case
No.

Test
Case

Predicate
node(s)
in flow
graph

Test
Condition
at
predicate
node

Boolean
value at
predicate
node

T1
{x=5,
y=2,
z=4}

n1 x > y True

n2 x > z True

n5 y > z False

T2
{x=2,
y=7,
z=9}

n1 x > y False

n2 x > z False

n5 y > z False

T3
{x=2,
y=7,
z=4}

n1 x > y False

n2 x > z False

n5 y > z True

T4
{x=2,
y=7,
z=1}

n1 x > y False

n2 x > z True

n5 y > z True

Table 10: Shows the Boolean value of predicate nodes for the
given test case(s)

Each test case Tj, is represented as a binary sequence of
nodes appearing in the path traversed by it. Thus, each test
case is represented as a binary sequence containing [n1 n2 n3
n4 n5 n6 n7] by traversing the flow graph (Figure 3) and using
the information given in table 8 and 10.

Test T1 is equivalent to [1 1 1 0 1 0 1]
Test T2 is equivalent to [1 0 0 0 1 0 1]
Test T3 is equivalent to [1 0 0 0 1 1 0]
Test T4 is equivalent to [1 0 0 0 1 1 0]

Compute Rji= ij [Tj XNOR Pi], i.e.,

T1XNOR P1

=[1 1 1 0 0 0 0] XNOR [1 1 1 0 0 0 0]=[1 1 1 1 1 1 1]

T1XNOR P2

= [1 1 1 0 0 0 0] XNOR [1 0 0 1 0 0 0]=[1 0 0 0 1 1 1]

T1 XNOR P3

= [1 1 1 0 0 0 0] XNOR [1 0 0 0 1 1 0] = [1 0 0 1 0 0 1]

T1 XNOR P4

= [1 1 1 0 0 0 0] XNOR [1 0 0 0 1 0 1] = [1 0 0 1 0 1 0]

T2 XNOR P1

= [1 0 0 0 1 0 1] XNOR [1 1 1 0 0 0 0] = [1 1 1 1 1 1 1]

T2 XNOR P2

= [1 0 0 0 1 0 1] XNOR [1 0 0 1 0 0 0] = [1 1 1 0 0 1 0]

T2 XNOR P3

= [1 0 0 0 1 0 1] XNOR [1 0 0 0 1 1 0] = [1 1 1 1 1 0 0]

T2 XNOR P4

= [1 0 0 0 1 0 1] XNOR [1 0 0 0 1 0 1] = [1 1 1 1 1 1 1]

T3 XNOR P1

= [1 0 0 0 1 1 0] XNOR [1 1 1 0 0 0 0] = [1 0 0 1 0 0 1]

T3 XNOR P2

= [1 0 0 0 1 1 0] XNOR [1 0 0 1 0 0 0] = [1 1 1 0 0 0 1]

T3 XNOR P3

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 1 0]= [1 1 1 1 1 1 1]

T3 XNOR P4

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 0 1] = [1 1 1 1 1 0 0]

T4 XNOR P1

= [1 0 0 0 1 1 0] XNOR [1 1 1 0 0 0 0] = [1 0 0 1 0 0 1]

T4 XNOR P2

= [1 0 0 0 1 1 0] XNOR [1 0 0 1 0 0 0] = [1 1 1 0 0 0 1]

T4 XNOR P3

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 1 0] = [1 1 1 1 1 1 1]

T4 XNOR P4

= [1 0 0 0 1 1 0] XNOR [1 0 0 0 1 0 1] = [1 1 1 1 1 0 0]

Now, a test case Tj is selected corresponding to path Pi that
contains all 1’s in resultant row. So, in final test suite, test case
T1 is selected corresponding to path P1 and test caseT2 is se-
lected corresponding to path P4 and test case T3 or T3 can be
selected corresponding to path P3. It is analyzed that there is
no test case corresponding to path P2. Next step is to design
new test case from the given test suite for non-traversed path

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 91
ISSN 2347-4289

Copyright © 2015 IJTEEE.

P2. Genetic algorithm is applied to design the new test case for
path P2. Steps for the genetic algorithm are:

1. Selection
Test cases are selected from the given population (test suite)
that matches maximum number of boolean values of predi-
cate nodes in the non-traversed path P2.

Using Tables 2 and 3, following observation is recorded:

Table 11: Shows test case matching to missed path

As test cases T1 , T2 and T3 matches single test condition each
of P2 non-traversed path, so T1 , T2 and T3 test cases are se-
lected for designing new test case for path P2. Now, next step
is to mutate the test cases so that mutant test case will satisfy
all the test conditions of non-traversed path .

2. Fitness function

Compute Ri= i [Tj XNOR P2] , i=1,2,3
Select the test case Ti corresponding to path P2 that
contains all 1’s in resultant row.

3. CrossOver
Test case T1{ x=5, y=2, z=4} matches the required predicate
condition (true) at node n1 (x > y), test case T2{ x=2, y=7, z=9}
and T3 {x=2, y=7, z=4}matches the required predicate condi-
tion (false) at node n2 (x > z). Since both the predicate condi-
tions n1 and n2 are not being satisfied by any single selected
chromosome, hence existing chromosomes T1 and T2 or T3
are crossover to create new chromosome satisfying both the
required predicate conditions.

T1: {x=5, y=2, z=4}
T2: {x=2, y=7, z=9}

Predicate condition at node n1 = (x > y) and at node n2 = (x >
z). Since gene x is common in both conditions, it is selected
for single arithmetic crossover. Initially, α is chosen as 0.5
randomly.

Child1 is {α.x1 + [1- α].x2, y1, z1}
Child2 is {[1- α]. x1 + α.x2, y2, z2}

Child1 is {x=3.5,y=2,z=4}
Child2 is {x=3.5,y=7,z=9}

Non-
traversed

path(s)

Test
case(s)

Predicate
nodes in

non-
traversed

path

Required
test

condition
at non-

traversed
path

predicate
nodes

Test
condition

at
predicate
nodes as
satisfied
by test
case

Number of
matched

conditions

P2

child1
n1 True True

2
n2 False False

child2
n1 True False 1

 n2 False False

Table 12: Shows new test case matching missed path

Since both the predicate conditions n1 and n2 are being satis-
fied by single child chromosome child1 , so test case child1 is
selected corresponding to path P2 in final test suite. Hence,
test cases T1 : {x=5, y=2, z=4} for path P1, T2 : {x=2, y=7, z=9}
for path P4 , T3 : { x=2, y=7, z=4} for path P3 and new test case
child1 : { x=3.5,y=2,z=4} for path P2 are required to test all the
independent paths of the above problem.

5. CONCLUSION AND FUTURE SCOPE
In the paper, Genetic algorithm has been used to search the
input domain of the subject program for suitable test cases.
Guidance is provided by the fitness function which assigns a
non-negative value to each candidate input test case. A test
case that matches the maximum predicate nodes in the path is
selected for the next generation. But, there are certain limita-
tions of the proposed method.

 Testing all the paths does not mean that all bugs in a
program are found. Bugs may be due to missing
statements in the code, so there are no paths to ex-
ecute.

 Some bugs are related to the order in which code
segments are executed.

 Also it is practically impossible to test all program
paths (e.g., loops).

 Nested conditions in the path are handled in simplified
way.

In future, efforts will be made to overcome the above men-
tioned limitations and hence improve the proposed algorithm.
Also more case studies containing complex source code will
be considered to measure the efficiency of the proposed me-
thod.

REFERENCES
[1] N.K. Gupta and M.K. Rohil, “Using Genetic Algorithm

For Unit Testing Of Object Oriented Software”, Pro-
ceedings of the International Conference on Emerging
Trends in Engineering and Technology, 16-18 July
2008, pp. 308-313,.

[2] M. Mitchell, An Introduction to Genetic Algorithms,

MIT press, 1996.

[3] Praveen Ranjan Srivastava and Tai-hoon Kim, “Appli-

cation of Genetic Algorithm in Software Testing”, In-
ternational Journal of Software Engineering and Its
Applications , vol. 3, no. 4, October 2009, pp. 87-95.

Non-
travers
ed
path(s)

Test
case(
s)

Predica
te
nodes
in non-
traverse
d path

Require
d test
conditio
n at
non-
traverse
d path
predicat
e nodes

Test
conditio
n at
predicat
e nodes
as
satisfie
d by
test
case

Number
of
matched
condition
s

P2

T1
n1 True True

1
n2 False True

T2
n1 True False

1
n2 False False

T3
n1 True False

1
n2 False False

T4
n1 True False

0
n2 False True

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 92
ISSN 2347-4289

Copyright © 2015 IJTEEE.

[4] RICCARDO POLI AND W.B. LANGDON, “GENETIC PRO-

GRAMMING WITH ONE-POINT CROSSOVER AND POINT MU-

TATION”, SOFT COMPUTING IN ENGINEERING DESIGN AND

MANUFACTURING, 1997, PP. 180-189.

[5] Sean Luke and Lee Spector, “A Revised Comparison

of Crossover and Mutation in Genetic Programming”,
Proceedings of the Second Annual Conference on
Genetic Programming 1997, 1998, pp. 240-248.

[6] Leonardo Bottaci, “A Genetic Algorithm Fitness Func-

tion for Mutation Testing”, Proceedings of the first In-
ternational Workshop on Software Engineering using
Metaheuristic Innovative Algorithms, Toronto, Ontario,
Canada, May 2001.

[7] Tzung-pei Hong , Hong-shung Wang , Wen-yang Lin
and Wen-yuan Lee, “Evolution of appropriate cros-
sover and mutation operators in a genetic process”,
Applied Intelligence, Vol. 16, 2002, pp. 7-17.

[8] MARIA CLÁUDIA FIGUEIREDO PEREIRA EMER, AND SILVIA

REGINA VERGILIO, “GPTEST: A TESTING TOOL BASED ON

GENETIC PROGRAMMING”, PROCEEDINGS OF THE GENETIC

AND EVOLUTIONARY COMPUTATION CONFERENCE (GEC-
CO 2002), SEPTEMBER 2002, PP. 1343-1350.

[9] Wen-Yang Lin, Wen-Yung Lee and Tzung-Pei Hong,

“Adapting Crossover and Mutation Rates in Genetic
Algorithms”, Journal Of Information Science And En-
gineering, Vol. 19, 2003, pp. 889-903.

[10] Abdelaziz M. Khamis, Moheb R. Girgis and Ahmed S.
Ghiduk, “Automatic Software Test Data Generation
for Spanning Sets Coverage Using Genetic Algo-
rithms”, Computing and Informatics, vol. 26, no. 4,
2007, pp. 383–401.

[11] LAWRENCE BEADLE AND COLIN G JOHNSON, “SEMANTI-

CALLY DRIVEN MUTATION IN GENETIC PROGRAMMING”,
PROCEEDINGS OF THE IEEE CONGRESS ON EVOLUTIO-

NARY COMPUTATION (CEC 2009), 2009, PP. 1336-1342.

[12] WILLIAM B. LANGDON, MARK HARMAN AND YUE JIA, “MUL-

TI OBJECTIVE HIGHER ORDER MUTATION TESTING WITH

GENETIC PROGRAMMING”, TESTING: ACADEMIC AND IN-

DUSTRIAL CONFERENCE - PRACTICE AND RESEARCH

TECHNIQUES, 2009 (TAIC PART '09.), 4-6 SEPT. 2009,
PP., 21-29.

[13] WANG JUN , ZHUANG YAN AND JIANYUN CHEN, “TEST

CASE PRIORITIZATION TECHNIQUE BASED ON GENETIC

ALGORITHM”, PROCEEDINGS OF THE INTERNATIONAL CON-

FERENCE ON INTERNET COMPUTING & INFORMATION SER-

VICES (ICICIS), 17-18 SEPT. 2011, PP. 173 – 175.

[14] PRENAL B. NIRPAL AND K.V. KALE, “USING GENETIC AL-

GORITHM FOR AUTOMATED EFFICIENT SOFTWARE TEST

CASE GENERATION FOR PATH TESTING”, INTERNATIONAL

JOURNAL OF ADVANCED NETWORKING AND APPLICATIONS,
VOL. 2, NO. 6, 2011, PP. 911-915.

[15] TIMO KÖTZING, ANDREW M. SUTTON, FRANK NEUMANN

AND UNA-MAY O’REILLY, “THE MAX PROBLEM REVISITED:
THE IMPORTANCE OF MUTATION IN GENETIC PROGRAM-

MING”, PROCEEDINGS OF THE GENETIC AND EVOLUTIO-

NARY COMPUTATION (GECCO’12), JULY 7–11, 2012, PP.
1333-1340.

[16] Chayanika Sharma, Sangeeta Sabharwal, Ritu Sibal,

“A Survey on Software Testing Techniques using Ge-
netic Algorithm”, IJCSI International Journal of Com-
puter Science Issues, vol. 10, issue 1, no 1, January
2013, pp. 391-393.

http://www.bibsonomy.org/author/Emer
http://www.bibsonomy.org/author/Vergilio
http://www.bibsonomy.org/author/Vergilio
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhuang%20Yan.QT.&searchWithin=p_Author_Ids:38021987200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianyun%20Chen.QT.&searchWithin=p_Author_Ids:38025987900&newsearch=true

