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ABSTRACT: In this paper a mathematical model that describes the spread of sexual infectious disease in a population is proposed and studied. It is
assumed that the disease divided the population into four classes: susceptible individuals of males (S), infected individuals of males (l), susceptible

individuals of females (5*) and infected individuals of females (1*). The impact of contact between of population and external sources of disease for

example (blood and other), on the dynamics of SIS*I* epidemic model is investigated. The existence, uniqueness and boundedness of the solution of
the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation in the model is investigated. Finally

the global dynamics of the proposed model is studied numerically.
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1. INTRODUCTION

Sexually transmitted diseases are one of the serious
diseases faced on human life at the moment due to the
spread of disease, the difficulty to control it, and the lack of
its treatment. One of these diseases is the disease of HIV /
AIDS which causes the death and Killing about 2 million
people all over the world. While, the number of new
infections may be even more than 2 million, which shows
that the problem in the spread of the disease more severe
and dangerous in the future. Moreover, the vast majority of
the populations living To HIV / AIDS are female, where
women represent 50% of people in most developed
countries [1]. The first mathematical model that describes
sexual diseases, or diseases transmitted through sex is
Cook and Yorke [2] and systems for the disease was one-
sex model. Lajmanovich and Yorke [3], Studied a special
system for gonorrhea consists of two-sex model. To
address the seriousness of the disease and provide a better
understanding and more clarity predictions of the behavior
of the spread of the disease has been the development of
many forms of mathematical models and applied to the
epidemic of HIV / AIDS, for example, Knox, E. G. [4] is
studied the transmission of AIDS. Anderson, R. M., Medley,
G.; May, F.R. M. and Johnson, A. M. A. [5] show a
preliminary study of the dynamics of AIDS. Anderson, R. M.
[6], the role of mathematical models in the study of the
transmission of AIDS. Dietz, K.; Heesterbeek, J. A. P. and
Tudor,D.W. [7], the effects of infection with HIV. Dietz, K. [8]
studied Transmission Dynamics of HIV. Brauer, F. and
Castillo-Chavez, C. [9] studied a group of Mathematical
Models of AIDS disease. And Levin, B.R., Bull, J.J. and
Stewart, F.M. [10] offered study of Evolution, and Future of
the HIV/AIDS Pandemic. In this paper we proposed and
studied a  mathematical model consisting  of

SIS™1* epidemic model, it is assumed that the disease
transmitted by contact as well as external sources. The
local as well as global stability analysis of the model is
investigated. Also, the local bifurcation is discussed.

2. The mathematical model

Consider a simple epidemiological model in which the total
population ( say N(t) ) at time t is divided in to fore sub
classes the susceptible individuals of males S(b),

susceptible individuals of females S*(t), infected
individuals of males I(t) and infected individuals of
females 17(t) which represented in the block diagram
given by figure (1).

1 ur
Infected
d‘r’

s

Figure (1): Block diagram of system (1).

Can be represented by the following system of
nonlinear ordinary differential equations:

s
dt

:Al—(ﬂ:),-l—ﬂj"\: ]S—,uS

%=[ﬂ3+%]5—(ﬂ+d1)l

)
ds* 1) .
Wzl\z—(ﬁ4+%js — 1S
dr* 1)« .
_dt :(ﬂ4+—ﬂ§ jS —(u+do)l

Here Aj>0,i=12 are recruitment rate of the
population ( Males and Females ) respectively, ¢>0 is
the natural death rate of each population, dj >0,i=12
are the disease related death rate, S >0,i=12 are the

infected rate (incidence rate) of the susceptible
individuals (Males and Females) respectively due- to
directed contact with the infected individuals and we
assumed that the disease in the above model will
transmitted between the population individuals by
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contact as well as external sources of disease for example
(Blood, Medical tools, etc) with an external incidence rate
Gi >0,i=34. Therefore at any point of time t the total

number of population becomes N =S(t)+ I (t)+S™(t)+17(t) .
Obviously, due to the biological meaning of the variables
S(t), 1(t),S™(t) and 1*(t) , in system (1) has the domain

Rﬁ:{(s,l,s*,l*)eR“,SZOJzo,s*zo,l*zo} . This is

positively invariant for system (1). Clearly, the interaction
functions on the right hand side of system (1) are
continuously differentiable. In fact they are Liptschizan

function on Rf. Therefore the solution of system (1) exists

and unique. Further, all solutions of the system (1) with
non-negative initial conditions are uniformly bounded as
shown in the following theorem.

Theorem (1) : All the solutions of system (1), which are
initiate in Rf, are uniformly bounded.

Proof:  Let (S(t),l(t),S*(t),I*(t)) be any solution of the
system (1) with non-negative initial conditions
(S(O),I(O),S*(O), I*(O)) Since N=S(t)+ 1 (t)+S™ () +17(t),
then:

dN dS dI ds* dI*
—_— =t ——+—
dt dt dt dt dt

This gives

C;—T:A1+A2—,u(8+l +s*+|*)—d1| —dyl”

So, C:j—T+,uN SA1+A2

Now, by using Gronwall Lemma [11], it obtains that:

My N(0)eH

N(t)sm(l—e
7

Al+A2

Therefore, N(t) < ast >0, hence all the

solutions of system (1) that initiate in Rf are confined in the
reign:

F:{(S,I,S*,I*)eRf:N sw}
u

Which complete the proof. ]

3. Existence of equilibrium point of system (1)
The system (1) has at most fore biologically feasible points,

namely E; = (S;, 1;,S;, 1;),i=0123. The existence

conditions for each of these equilibrium points are
discussed in the following:

1) If 1=1"=0, then the system (1) has an
equilibrium point called a disease free
equilibrium point and denoted by

Eo =(Sp,0,S0,0) where:

o1
“ )
g :ﬁ
)7
2) If 1=0, then the system (1) has equilibrium point

called a male's disease free equilibrium point and
denoted by E;=(S;,0,S;,1y) whereS;,S; and I
represented the positive solution of following set of
equations:

Al—yS =0

Ag—(fa+m)S" =0 3

BaS” = (u+dx)1" =0

From equation (1) and (2) of above system we get:

A (4a)

S; =
Ba+dy

Now, substituting S; in equation (3) of system (3) we
get:

L - (ab)
(B4 + p)(dg + 1)

3) If 1" =0, then the system (1) has equilibrium point
called a female's disease free equilibrium point and

denoted by E; =(S,,15,55,00 where S,,1,,55

represented the positive solution of the following set of
equations:

A1—(B3+u)S=0
B3S —(u+dp)l =0 5)
Ay —uS* =0

From equations (1) and (3) of above system we get:

o
B3+u (62)
« Ao
Sy=—2
7]
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Now, substituting S, in equation (2) of system (5) we get:

_ MB b)
(B3 + u)(dp + 1)

4) If 1%0 and 1"%0 then the system (1) has an
equilibrium point called endemic equilibrium point and
denoted by E;=(S3,13,53,13) where Sg,13,S3 and I3

represented the positive solution of the following set of
equations:

Al
S—4S=0
NS

Al—(ﬁaJr
[/3 Al Js (u+dp)lg =0
Az—[ﬂ +ﬁz) —185 =0

(ﬂ s L2l ]S*—(u+d2)l§=0

()

Straightforward computation to solve the above system of
equations and from equation (1), (2) and (3) of system (7)
gives that:

_ AN

BN+ B3+ N

_ A1(B3N +Bil3)
(u+0d1) (BN + B3 + uN)

or___ MoN

BN+ fol + 1N

(8)

Now, substituting 13 and S3 in equation (4) of system (7)
we get:

15=222, 1 [p2_apyp, ©)

2Dy 2D1
Here

Dy = A1 (u+dp)[A18p + N(By + p2)(dy + )] > 0

Dy = N(u+d)[A1fa By + N (B + )t + cy )(B3 + 1))
~ Ao Bl Ar + N(u+dyp)]

D3 = ApBN[A1B3 + N(u+dy)(B3 + )] < 0

Clearly, equation (9) has a unique positive root by 13 and

then (Ez) exists uniquely in Int. Rf if and only if D, >0.

4. Local stability analysis of system (1)
In this section, the local stability analysis of the equilibrium
points E;,i=0123 of the system (1) studied as shown in

the following theorems.

Theorem (2): The disease free equilibrium point
Eo =(S0.0,S0,0) of system (1) is locally asymptotically
stable if the following condition is satisfied:

N > Max.{ 23580 —tiN,23S0 —doN } (10)

Proof: = The Jacobian matrix of system (1) at (Eg)
can be written as:

~(Parm) 0 o A

s —wrd) o A%
T I o

0 ﬂZTSS Pa —(u+dp)

Now, according to Gersgorin theorem if the following
condition holds:

4
i > > e
i=1

i#]

Then all eigenvalues of J(Ej) exists in the region:

4
o=U U*eC:‘U*—aii‘<Z|aij|

i=1

i#]

Therefore, according to the given condition (10) all the
eigenvalues of J(Ey) exists in the left half plane and

hence, E; is locally asymptotically stable. =

Theorem (3): The male's disease free equilibrium
point E;=(S1,0,S1,1y) of system (1) is locally

asymptotically stable if the following condition is
satisfied:

N > Max.{ 23,8 —thN,23S; —doN } (12)

Proof: The Jacobian matrix of system (1) at (E;) can
be written as:

Ay o 0o &2

Al AS1

+—=— —(u+dq) 0 —_

ey N 1 N
0 A I

0 PBL ()
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Now, according to Gersgorin theorem if the following
condition holds:

4
ol > > |
i=1

i#]

Then all eigenvalues of J(E;) exists in the region:

4
§:U u* ECI‘U*—bii‘<Z|bij|
i=1
i)
Therefore, according to the given condition (11) all the
eigenvalues of J(E;) exists in the left half plane and hence,

E, is locally asymptotically stable. [

Theorem (4): The female's disease free equilibrium point
E, =(Sy,1 2,8’2k ,0) of system (1) is locally asymptotically
stable if the following condition is satisfied:

N > Max.{ 23,85 —thN, 23S, —d,N } (12)

Proof : The Jacobian matrix of system (1) at (E,) can be
written as:

~(By+u) O 0 A%
fr —(u+dp) 0 A%

I(Ep) = \
o 22 22 o

S*

Now, according to Gersgorin theorem if the following
condition holds:

4

il > 2 i
i-L
i#]

Then all eigenvalues of J(E») exists in the region:

4
w=U U*ECZ‘U*—C“‘<Z|C"'|
i=1
i#]
Therefore, according to the given condition (12) all the
eigenvalues of J(Ey) exists in the left half plane and
hence, E, is locally asymptotically stable. =

Theorem (5): The endemic equilibrium point
E3=(S3,13,53,13) of system (1) is locally
asymptotically stable if the following condition is
satisfied:

N > Max.{ 23,83 —d1N,2/3S3 —dyN } (13)

Proof: The Jacobian matrix of system (1) at (Ez) can
be written as:

s By o 0 =
13 S
PR S 0 B2
I(Es)= N \ N
0 e R I
S3 I
0 £ B (uedy)|

Now, according to Gersgorin theorem if the following
condition holds:

4
il > 2|
i=1

i#]

Then all eigenvalues of J(E3) exists in the region:

4
r=U U*ECZ‘U*—dii‘<Z|dij|
i=1
i#]
Therefore, according to the given condition (13) all the

eigenvalues of J(Ez) exists in the left half plane and
hence, Ej is locally asymptotically stable. ]

5. Globally stability of system (1)

In this section, the global dynamics of system (1) is
studied with the help of Lyapunov function as shown in
the following theorems.

Theorem (6): Assume that, the disease free
equilibrium point Ep; of system (1) is locally
asymptotically stable. Then the basin of attraction of
Eg, say B(EO)ch, it is globally asymptotically
stable if satisfy the following condition:

NG+ )1+ G BN + 411050 + (8N + 2055 | (14)
Proof: Consider the following positive definite function:

Vlz[S—SO—SOIniJH 5T osgosyinE |
SO SO
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Clearly, V;: Rf—>R is a continuously differentiable function
such that V1(Sp,0,Sg,0) =0,

andV4(S,1,8%,1%)>0, ¥(S,1,5%,1%) #(Sp,0,S¢,0) .~ Further
we have:

By _[(3-50)05 a1 5" s o5t ar
dt dt

dt S Jdt dt s* | dt

By simplifying this equation we get:

dvp __u 2 _ M (ox_ox Al

F=—§(S—SO) _S_*(S —50)2+30 B3+
So pal —(u+d ) =(u+dy”
+S0| fa+ N p+dp )l = (u+dy)

Obviously,%<0, and then V; is a Lyapunov function

provided that condition (14) hold. Thus Ejy is globally
asymptotically stable in the interior of B(Ep), which means
that B(Eg) is the basin of attraction and that complete the
proof. [

Theorem (7): Assume that, the male's disease free
equilibrium point E; of system (1) is locally asymptotically

stable. Then the basin of attraction of E;, say B(E;)c Rﬁ,

it is globally asymptotically stable if satisfy the following
conditions:

(ﬂ—jjz < 4[—ﬂ 4T i ](—“ +*d2 J (15a)
| s |

l(ﬁ3N + 418 +ﬁzsf|J|* <[(y+dl)N|*+ﬁ2|fs*J| (15b)
Proof: Consider the following positive definite function:

S % * % S *
V2= S—Sl—Slln— +1+|S —Sl—Slln—*
Sl Sl

o w17
+1 1 —|1—|1|n—*
I

Clearly, Vy: Rﬁ'—)R is a continuously differentiable function
V5(S1,0,51,17) =0,

andV,(S,1,8%,1%)>0, V¥(S,1,S*,1") #(5,,0,S{ , 1) . Further
we have:

dV, (S-S;)dS dl [S*—S;|ds* [I1"—If |dI*
—L = —|—+—+ — | — |—
dt S Jdt dt s* | dt 1* ) dt

By simplifying this equation we get:

such that

dv, U 2 Ba+ o *
Do _H(s_g | LatHs*_g
R e

+/|3_j(s*_sl*Xl*—If)—(“f*dzl('*-'f)z

I I .« S*If
+[,83+ ﬁ%\l ]Sl—(,u+d1)l +%[sl —|—1]

Therefore, according to condition (15a) it is obtain that:

dditz < —g(s -8 -
2
s e

Obviously, %<0 for every initial points satisfying

conditions (15b) and then V, is a Lyapunov function
provided that conditions (15a)-(15b) hold. Thus E; is
globally asymptotically stable in the interior of B(g),
which means that B(E;) is the basin of attraction and
that complete the proof. [

Theorem (8): Assume that, the female's disease free
equilibrium point E, of system (1) is locally
asymptotically stable. Then the basin of attraction of
E,, say B(EZ)ch_', it is globally asymptotically
stable if satisfy the following conditions:

)

[(ﬁ4N +B1)S5 + BiS,l *JI <[(u+do)IN + B1,S]1* (16b)

Proof: Consider the following positive definite function:

V3 Z(S—Sz—SZmij-I-(' —|2—|2|I’ILJ
S2 I2

8" -85 -53m>2 |41
S2

c

learly, V3:Rf—>R is a continuously differentiable
V3(S2,12,52.,0)=0,

andVz(S,1,S",17) >0, ¥(S,1,8%,1") #(S5,1,,55,0).
Further we have:

function such that
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dvg (s szjds [I—Iz]dl S*-s5 |ds* +dl*
dt S Jdt I )dt g* dt  dt

By simplifying this equation we get:
dV3 g (ox o B3+ u 2
—S oL _syf | B |(s-5
-l -sif -(Barts-sy)

O A = (G
« Bl Sl
(ﬂ4+ﬂz) —(u+do) +'B?\l (52——2j

Therefore, according to condition (16a) it is obtain that:

aVs —i(s* —sg‘)z
dt s*

—N@(S -S,)- ’”Idl (- 'z)T

(ﬂ4+ﬂ2 ) (ﬂ+d2)|*+ﬂ}\:*[52—mj

dV3<0 for every initial points satisfying

Obviously,
conditions (16b) and then V3 is a Lyapunov function
provided that conditions (16a)-(16b) hold. Thus E, is
globally asymptotically stable in the interior of B(Ey),

which means that B(E,) is the basin of attraction and that
complete the proof. n

Theorem (9): Let the endemic equilibrium point Ez of

system (1) is locally asymptotically stable. Then it is globally
asymptotically stable provided that:

lpon s f < 2Nigs e )i NG ] (a72)

[/asa]z<§[N(ﬂ3+u)+ﬂll*][N(u+dz)] (17b)
[523 ]2 3[ (u+ 0 )| [N(Bs + 1)+ B213] (17¢)
[8153+ﬂ25§]2<gN2[/1+d1][,u+d2] (17d)

[paN+ ot P < 2IN(sa + )+ polsINGu+ )] (17€)

Proof: Consider the following positive definite function:

V4:(S—S3)2+(I I3/ (s —53)2 (l —|3)2

2 2

Clearly, V4:Rf—>R is a continuously differentiable
function such  that  V4(S3,I3,53,13)=0 and

Vg(S,1,8%,1%)>0, ¥(S,1,8%,1%) = (S3,13,53,13) . Further, we
have:

av, ds dS
Y4 (S -85) =2+ (I — 13)—
ot (S-S3) pm ( 3)
dI
+(1"
By simplifying this equation we get:
dv 1 1
d—t4=—§a11(5 S3)7 +a1p(S -85 )1 -13)- 5%2('-'3)2
1 1 * *
—5311(5 S3)? —aya(s - 53)(' L ) 5344(l —|3)2
l * * 1 * *
*Eazz(lfls) —apg(l *'3)(3 *53) 73 33(5 -S3
1 * 1 * *
—5322(|—|3)2+az4(|—|3)(| -1 )—§a44(| -3
1 * * * * |, * * 1 * *
—56.33(5 —53)2+a34(3 —S3X| —I3)—§a44(l -3
With

aj1= (ﬂ3+ﬂ)+ﬂ?\: }alz{ﬂ:ﬁﬁll }iazz=[ﬂ+d1]

N

*

a14= ﬂlss}a44:[ﬂ+d2];az3={ﬂ2,\ls }333{(/?4 +ﬂ)+%}

| N

ary =
24 N

5153+ﬂ253} [ﬂ +ﬁ2|3}

Therefore, according to the conditions (17a)-(17e) we
obtain that:

2
%S%{ M(ysg)— M(lls)]

C 2
1 MG, W('*-'é‘)]

- 2
_%_ M("@)*’ w&*_sg)}

2
,% MU ,|3), /N—E'“;rdZ)(ﬁ@‘)}

% N(ﬁ4+/21)+ﬁ2|3 (s*—sg)— N(ﬂ;dz)(ﬁ_,;)r

Clearly, dv + <0, and then V, is a Lyapunov function

provided that the given conditions hold. Therefore, Ej

is globally asymptotically stable. ]
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6. Local bifurcation analysis of system (1)

In this section, the effect of varying parameter on the
dynamical behavior of the system (1) around each
equilibrium points is studied. Recall that the existence of
non-hyperbolic equilibrium point of the system (1) is the
necessary but not sufficient condition for bifurcation to
accurse. Therefore, in the following theorems and
application to the Sotomayor’s theorem for local bifurcation
[13], is adapted.

Local bifurcation near (Eg) :
Theorem (10): The system (1) at the disease free

equilibrium point (Ep) with the parameter
ﬂl[o] _N 2(+ 1) Ba + g2+ 0y e+ dp) has:
B2t50S6(Bs + Pa+ 1)

1) No saddle-node bifurcation
2) No pitchfork bifurcation
3) A transcritical bifurcation

Proof: According to Jacobian matrix J(Eg) given by

equation (12) the system (1) at the disease free equilibrium
point (Eg) has zero eigenvalue (say A=0) if and only if

det(J(Eg))=0,

Aol N 2(B3+ N B+ 1)+ 0y N+ dp)
BorSoSo (B3 + o+ )

candidate bifurcation parameter, and the Jacobian matrix
J(Eg) with B = ﬂl[o] becomes:

therefore,

is taken as a

) o ]
~(B3+u) O 0 A%
/4030
- - d 0
7o 3g(a—)- s (u+*1) :
o B2 gm0
0 % Ba —(u+dp)

Further the

eigenvector
corresponding to A =0 satisfy the following:

(say K1 = (kg kp kg kg )T )

okl — skl then Fokll-o

From which we get that:

[o]
_ ﬁl SOk4 -0

~(Bs+ 1) N (18a)
[o]

Pk — (1 +d1)ky +ﬂ1—80k4:O (18b)

502 (g =0 (180

Sok
%+ﬁ4k3—(ﬂ+d2)k4 =0

(18d)

So by solving the above system of equations we get:

kp =—pky; ko =0ky; kg =—2k4

Where:

_ Ao
 N(B3+u)
q= ﬁ{o]soﬂ
N(Bs + pufu+dy)
_ ﬂl[o]ﬂ2ﬂ5033
NZ(B3+ ) By + s +ly)

Here k4 be any non zero real number. Thus

- pky

ko] _ aky
— Zk4

Ky

Similarly the eigenvector W[O]z(wl Wy, Wy, Wy )T that

correspondingto A=0 of IJ can be written:

~(Bs+u) B 0
$2S0
0 —(u+d -
i W bl (ﬂo ! —(ﬁ4'\i/4
F
N N
This gives:
XWy
W [0] _ mW4
YWy
Wy
Where
_ B2P3ParSo
N(Bs+ 1) Ba + p)u+dy)
_ BoBarsSo
N (B4 + )t +dy)
__Pa
(Ba+u)

0
B2S0 !
N | W2
:84 W3
—(u+dg) | H

Here Wy be any non zero real number. Now, rewrite

system (1) in a vector form as:

Copyright © 2014 IJTEEE.
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dX
—= = f(X
prallA

_—_— T .
Where X:(S,I,S N ) and f =(f],fy, f3,fg)" with
fj,1=1234 are given in system (1), and then determine

ar = fﬁ1 we get that:

dA
__l*_
: :
* 0
fo=| SU | Then f4(Eq.A%= .
N
0 0
. 0 .
Therefore:

W[O]T ) fﬂl(EO’ﬂl[O]) -0

Consequently, according to Sotomayor theorem [13] the
system (1) has no saddle-node bifurcation near Ey atﬂl[o].

Now in order to investigate the accruing of other types of
bifurcation, the derivative of f B with respect to vector X,

say Dfﬁl(Eo,ﬁl[O]), is computed

000 -2

N

Df, (B0, A%h=|0 0 0 0
000 0

000 0

So
wlol’ ~[Df'31(EO,,BP])~ K[O]]:—Sol:\l—"'m(x—m);to

Again, according to Sotomayor theorem, if in addition to the
above, the following holds

W[O]T . [DZ f (E01ﬁ1[0]) . (K[O]’ K[O])];t 0

Here Df(Eo,ﬂl[O]) is the Jacobian matrix at Ey and ,81[0],

then the system (1) possesses a transcritical bifurcation but
no pitch-fork bifurcation can occur. Now since we have that:

210k |
N

_2pipk§
24 60 40N 0] M| TN

D (Eg, A1) - (KM, K 25,02k

N
_2B,02k%
N

Therefore:

W [o]" . [DZ f (Eovﬁl[o]) . (K[O], K[O])]

2 2
_2p D’\|I<4W4 (x—m)+ Zﬂzq’flk4W4 (y—=1)#0

Then the system (1) has a transcritical bifurcation at Ep
when the parameter £ passes through the bifurcation

value /31[0] .

Local bifurcation near (g;) :

Theorem (11): The system (1) at the male's disease
free equilibrium point (E;) with the parameter

N3(5, +ﬂ)(Nﬂ3 + A1+ N,UX#JF dy Nu +dy)
NALS;ST (BN + A7 )

1) No saddle-node bifurcation
2) No pitchfork bifurcation
3) A transcritical bifurcation

has:

pil=

Proof: According to Jacobian matrix J(E;) given by
equation (13) the system (1) at the male's disease free
equilibrium point (E;) has zero eigenvalue (say 1:0)
only if  det(J(E;))=0, therefore,

A= N3 (B +ﬂ)(N/7’3 +AlL + N#Xﬂ+d1)(,u+d2)
Nﬂjﬂslsf(ﬂsN +,81|1*)

taken as a candidate bifurcation parameter, and the
Jacobian matrix J(E;) with ﬁzzﬂg] becomes:

if and

is

J=uli=0)
* S T
g+ Al 0 o A%
por Bl ey 0 A2
- [gx
0 e NN S
[ls*
0 ﬂZNl Bs  —(u+dy)

Further the eigenvector (sayK[l]z(kl,kz,k3,k4)T)

corresponding to ZzO satisfy the following:

3k = 2B Then kM -0
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From which we get that:

( '311 kal—%lk“:o (19a)

ﬂlljkl (y+d1)k2+ﬂllk4 =0  (19b)

Als;
Nl 2 (ﬂ4 + ﬂ)k3 =0 (19C)
[l
ﬂz f]l k2 + ﬂ4k3 - (/,l + d2)|(4 =0 (lgd)

So by solving the above system of equations we get:
kp =—pky; ko =0ky; k3 =—zky
Where:

_ £S
N3 + fil1 +Nu
_ P
s+ N3 + Bl + N
Al uss;
N(Ba + )+ dyNBs + 15 + N

=

Here k, be any non zero real number. Thus

— pkq

Kl _| ke
— Zk4

Kg

Similarly the eigenvector W[l]z(wl,wz Wy, wy )

corresponding to 21=0 of le can be written:

1 +/1 s +ﬂ1|1 0 0
e pliss | |we
1]a * *
37wkl - v dy) 752N51 ﬁstl . :',sz
OS ~(Ba+u)  Pa Wy
AL 0 —(usdy)
=0
This gives:
XWy
witlZ| Ma
YWy
Wy

Where
Y
N(Ba + )+ A NBs + 1T +Nus)
st
N(By + ) +0y)
__DPa
(B4 + 1)

Here wjy be any non zero real number. Now, rewrite
system (1) in a vector form as:

dx
—=f(X
5 - [X)
_—_— T .
Where X=(S,I,S ,I) and f =(f,f,,f3,fs) with
fi,i=1234 are given in system (1), and then

determine i: fz, we get that:
dg, "

S
0
S¥

f,=| -2 | then 5, By, A =
|

O O O o

Therefore:

i 1\ _

w1y (5, a8 =0
Consequently, according to Sotomayor theorem [13] the
system (1) has no saddle-node bifurcation near E;

at ﬁg]. Now in order to investigate the accruing of other
types of bifurcation, the derivative of f 5, with respect

to vector X, say Dfg (El,,b’gl]), is computed

0 0 00
0 0 00
S*
Dt (E1. A =| 0 -3 00
*
0 S oo
Y ]

So
W[l]T ) [Dfﬂz (Ey, ﬂLl]) . K[l]]: _%(y ~1)#0

Again, according to Sotomayor theorem, if in addition to
the above, the following holds
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W[l]T .[DZ f (Elxﬂgl]) . (K[l], K[l])];t 0

Here Df(El,,Bgl]) is the Jacobian matrix at E; and ﬁLl], then

the system (1) possesses a transcritical bifurcation but no
pitch-fork bifurcation can occur. Now since we have that:

2, pk2
N
il (k] - 2k
2 1 1 1| _ N
D2 £ (Ey, p3) - (KB, k) |= 2otk
N
23,02k}
2k

Therefore:

W[O]T .[DZ f (Eo:ﬂl[o]) ) (K[O]’ K[O])]

2 2
_ 2,15'1F;\|l<4W4 (x—m)+ 2ﬂ2Q;k4W4 (y=1)=0

Then the system (1) has a transcritical bifurcation at E;
when the parameter f, passes through the bifurcation

value ﬂgl]. [

Local bifurcation near (E») :

Theorem (12): The system (1) at the male's disease free
equilibrium point (Ep) with the parameter

A2 N3(Bs + 1\ NBa + Bolp + NN+ dy N+ dp)
NB245253B212 + N(L+ By + )]

1) No saddle-node bifurcation
2) No pitchfork bifurcation
3) A transcritical bifurcation

has:

Proof: According to Jacobian matrix J(Ey) given by
equation (14) the system (1) at the male's disease free
equilibrium point (Ep) has zero eigenvalue (say /T:O) if
det(J(E,))=0,

Jol - N3(B5 + 1)\ NBay + Balp + Nush + oy e + )
NB18555 (ol + N1+ B + )]

as a candidate bifurcation parameter, and the Jacobian
matrix J(Ep) with ﬂlzﬁl[z] becomes:

and only if therefore,

is taken

J=3,(x=0)

~(Bz+u) O 0 A

1o e 0 @
0 fﬁZTS; (22 o

o L 2 ~Gr+da)|

Further the eigenvector (say K[Z]Z(kl,kz,kg,k4)T)
corresponding to A =0 satisfy the following:

3,k = 7kl Then 3,k[2l-0

From which we get that:

—(ﬂ3+ﬂ)k1—@:0 (202)
Baky = (u+dp)ka + @ =0 (20b)
_%’ﬁkz_(ﬂ‘ﬁ-%-ﬁ-yjkg:o (200)
&Ekz{m +%Jk3_(y+d2)k4 =0 (200)

N
So by solving the above system of equations we get:

Ky =—pky; Ky = 0Ky k3 =—2k4

Where:
o= ﬁl[z]sz
N (B3 + 1)
3 ﬂl[z]szﬂ
A N(B3 + u)p +dy)
P Bass:S;

" N(B3 + 1 NBy + ol g + Nu)u+dy)

Here k, be any non zero real number. Thus

— pky

k2] _| ke
— Zk4

kg

Similarly the eigenvector W /2! =(wy, Wy, Wy, wy)" that

corresponding to A =0 of Jg can be written:
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jg .W[Z]
[~(Bz+u) P 0 0
0 (ure)  -L22 Pz | fw,
- w2
5o 0 {ﬂw%wj pa+ P22l
[2]5 [2]5 Wy
SAZe A 0 (o)
This gives:
XWy
W[Z]: mW4
YWy
Wy
Where
. Bap3S;
(B3 + 1)NBy + Bl g + N Y+ dy)
_ BotiS3
(NBy+ By + Nup+dy)
NB4 + Bal

 NBs+fBoly+Nu

Here w,; be any non zero real number. Now, rewrite
system (1) in a vector form as:
dX

=1

* % \r T .
Where X =\§5,1,5,1 and f =(fl,f2,f3,f4) with
fj,i=1234 are given in system (1), and then determine

dr = fﬁl we get that:

dA
st |
N 0
* 0
2
f5=| S | Then fﬁl(Ez,ﬂl[])zo
N
0 0
L 0 .
Therefore:

W[Z]T ) fﬂ1(E2-ﬂl[2]) -0

Consequently, according to Sotomayor theorem [13] the
system (1) has no saddle-node bifurcation near E, at ,81[2].
Now in order to investigate the accruing of other types of

bifurcation, the derivative of f 5, with respect to vector

X, say Dfﬂl(Ez,ﬂl[z]), is computed

00

o

Df . (B2, AP =|0
0
0

o o

o o
o oZ|,\‘,” lm
z|S

o
o

So
whl' .[Dfﬁl(Ez,ﬂP])- K[Z]]: —SZ"T“""“(X—m);éo

Again, according to Sotomayor theorem, if in addition to
the above, the following holds

W[Z]T . [DZ f (Ezvﬂl[z]) . (K[Z], K[z])]¢ 0

Here Df(Ez,,Bl[z]) is the Jacobian matrix at E,

and /}1[2], then the system (1) possesses a transcritical

bifurcation but no pitch-fork bifurcation can occur. Now
since we have that:

2ppkd |

N
_2pipkg
0?1 A7 (<ELRBD) N

2

N
28,02k
N

Therefore:

W[Z]T . [DZ f (EZv:Bl[Z]) . (K[Z], K[Z])]

2 2
_ 2ﬁllf:\|l<4W4 (x—m)+ Zﬂzq’ilk4W4 (y-1)=0

Then the system (1) has a transcritical bifurcation at E,
when the parameter S passes through the bifurcation

value ﬂlz] . [

Local bifurcation near (E3) :

The occurrence of local bifurcation near the endemic
equilibrium point (Eg) of system (1) is also studied. Not
that, it is well known that the necessary condition of the
system (1) to have a local bifurcation (saddle-node,
transcritical and pitchfork bifurcation) around (E3) at a

specific parameter are given by, det(J(E3))=0, where
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J(E3) represent the Jacobian matrix of the system (1).

Now since the condition that guarantee to make
det(J(E3))=0 does not exist. Hence there is no possibility

of occurrence of local bifurcation.

7. Numerical analysis of systems (1):

In this section, the global dynamic of system (1) is studied
numerically. The objectives of this study are confirming our
obtained analytical results and understand the effects of
contact and existence of the external sources for disease

on the dynamic of SIS*I™* epidemic model. Consequently,
the system (1) is solved numerically for different sets of
initial conditions and for different sets of parameters. It is
observed that, for the following set of hypothetical
parameters given equation (21) with g =0,i=12,3,4 that
satisfies stability condition (10) of disease free equilibrium
point, system (1) has a globally asymptotically stable
endemic equilibrium point as shown in following figure.

A1 =500, Ap =400, B =0.0002, f3, =0.002,

21
B3 =0.0001, B4 =0.0003, =03, dy =05, dy =0.4 (21)

2000 1500

1800
1600 1000

1400

Suse. of male
Infe. of male

1200f ;' 500

1000
800 0

0 1000 2000 3000
Time

2500 1000

2000
1500

1000}

Susc.of ferale
Infe. of female

0 1000 2000 3000 DD \“EDD 1000 1500
Time Time

Figure (2): Time series of the solution of system (1). (a)

trajectories of S, (b) trajectories of |, (c) trajectories of

S*and (d) trajectories of 1. The solid line refers to the
trajectory started at (2000, 1500, 2500, 1000), while the
dotted line refers to the trajectory started at (900, 500, 700,
700).

Obviously, Figure (2) shows clearly the convergence of
system (1) to the disease free equilibrium point
Ep =(1667,0,13330) asymptotically from two different initial
points. However, for the data given equation (21) with
G =0,i=13. The trajectories of system (1) starting from

different sets of initial data are drawn in Figure. (3).

(b)

3000 3000

()
2500 2500
2000 2000

1500 1500

Susc. of male
Infe. of male

1000} 1000

5001 5000

0 1000 2000 3000

2500 3000

2000
2000

1500

Susc. of female
Infe. of femnale

- 1000
1000t -,

500} 0 RRRE
0 1000 2000 3000 0 500 1000 1500
Time Time

Figure (3): Time series of the solution of system (1). (a)
trajectories of S, (b) trajectories of 1, (c) trajectories of

S*and (d) trajectories of 1*. The solid line refers to the
trajectory started at (3000, 2500, 2500, 3000), while the

dotted line refers to the trajectory started at (200, 900,
500, 1000).

Obviously, Figure (3) shows clearly the convergence of
system (1) to the infected free of male equilibrium point
E; =(1667,0,1332,0.57) asymptotically from two different

initial points. However, for the data given equation (21)
with g =0,i=2,4. The trajectories of system (1) starting
from different sets of initial data are drawn in Figure.

(4).

2000 2000

1500
1500

Infe. of male

1000

Susc. of male

1000} ; 5
h 5001,

500 o =
0 1000 2000 3000 0 500 1000 1500
Time Time

(c)
1500 1500

1000 1000

Susc. of female
Infe. of fernale

500t 500

0
0 1000 2000 3000 0 500 1000 1500
Time Time

Figure (4): Time series of the solution of system (1). (a)
trajectories of S, (b) trajectories of 1, (c) trajectories of

S*and (d) trajectories of 1. The solid line refers to the

trajectory started at (2000, 2000, 1500, 1500), while the

dotted line refers to the trajectory started at (500, 1000,
200, 500).

Obviously, Figure (4) shows clearly the convergence of
system (1) to the infected free of female equilibrium
point E, =(1666,0.20,13330) asymptotically from two

different initial points. Now, for the data given equation
(21), the trajectories of system (1) starting from different
sets of initial data are drawn in Figure. (5).
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(b)
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Figure (5): Time series of the solution of system (1). (a)
trajectories of S, (b) trajectories of I, (c) trajectories of

S*and (d) trajectories of 1*. The solid line refers to the

trajectory started at (3000, 2500, 2500, 2000), while the

dotted line refers to the trajectory started at (100, 2000,
250, 1000).

Obviously, Figure (5) shows clearly the convergence of
system (1) to the endemic equilibrium point
E3 =(1666,0.20,1332,0.57) asymptotically from two different

initial points. Now the effect of increasing the incidence rate
of disease resulting by external sources of susceptible of
males on the dynamics of system (1) is studied by solving
the system numerically for the parameters values
f3=0.0001, 0.3, 0.5 respectively, keeping other

parameters fixed as given in equation (21), and then the
trajectories of system (1) are drawn in Figures (6a)-(6c)
respectively. Note that, in the next figures (6-9), we will use
the following representations: Solid line for describing
trajectory of S; dashed line for describing trajectory of |I;

S*; dash dot line for

describing trajectory of |*and starting at (2000, 3000,
3000, 500).

dot line for describing trajectory of

(@)
3000 T

2800f

\
(IS
[
znnnk
c l ‘\ ;
|
)
|
|
\
\
\
N

X 1500

1000

500

'~
0 500 1000 1500 2000 2500 3000
Time

3000
2600f; %
2000

5 1500

1000

500

S n L L -
0 500 1000 1500 2000 2500 3000
Time

3000
2800}
2000

= 1500

1000

500

LS n L L 2
0 500 1000 1500 2000 2500 3000
Time

Figure (6): Time series of the solution of system (1).
(a) for f3=0.0001, (b) for #3=0.3, (c) for B3 =0.5.

According to Figure (6), as the incidence rate of disease
resulting by external source increases (through

increasing f3), then the trajectory of system (1)

approaches asymptotically to the endemic equilibrium
point. In fact as f3 increases it is observed that the
number of susceptible of (males and females) decrease
and the number of infected of (males and females)
individuals increases. Similar results are obtained, as
those shown in case of increasing fs, in case of
increasing the incidence rate of disease resulting by
contact between (susceptible of males and infected of
females), that is means increasing £ and keeping other
parameters fixed as given in (21). The effect of
increasing the incidence rate of disease resulting from
external sources of females on the dynamics of system
(1) is studied by solving the system numerically for the
parameters values f,=0.0001,0.2,0.7 respectively,
keeping other parameters fixed as given in equation
(21), and then the trajectories of system (1) are drawn
in Figures (7a)-(7c) respectively.
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Figure (7): Time series of the solution of system (1). (a)
for 4 =0.0001, (b) for g, =0.2, (c) for 5, =0.7.

According to Figure (7), as the incidence rate of disease
resulting from external sources of females increases then
the trajectory of system (1) approaches asymptotically to
the endemic equilibrium point. In fact as g, increases it is
observed that the number of susceptible of (males and
females) decrease and the number of infected of (males
and females) individuals increases. Similar results are
obtained, as those shown in case of increasing f, , in case
of increasing the incidence rate of disease resulting by
contact between (susceptible of females and infected of
males), that is means increasing f,and keeping other
parameters fixed as given in (21). In the following, system
(1) is solved numerically for the following values of disease
related death rate of infected of males
d;=0.5, 3,5 keeping other parameters fixed as given in
equation (21), and then the trajectories of system (1) are
drawn in Figures (8a)-(8c) respectively.
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Figure (8): Time series of the solution of system (1).
(a) ford; =0.5, (b) ford; =3, (c) ford; =5.

Obviously from these figures, as the disease related
rate of males increases the trajectory of system (1)
approaches asymptotically to the endemic equilibrium
point and the number of susceptible individuals of
(males and females) increase and decreasing in the
numbers of the infected individuals of ( males and
females). Similar results are obtained, as those shown
in case of increasing d;, in case of increasing the

disease related rate of females, that is means
increasing d,and keeping other parameters fixed as
givenin (21).

8. Conclusion and discussion:

In this paper, we proposed and analyzed an
epidemiological model that described the dynamical
behavior of an epidemic model, where the infectious
disease transmitted directly from external sources as
well as through contact between them. The model
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included fore non-linear autonomous differential equations
that describe the dynamics of fore different populations
namely susceptible of males (S), infected of males (I),

susceptible of female (S™), infected of females (). The

boundedness of system (1) has been discussed. The
conditions for existence, stability and bifurcation for each
equilibrium points are obtained. Further, it is observed that
the disease free equilibrium point (Ep) exists when

I =1 =0 and locally stable if and only if the condition (10)
holds, while it is globally stable if and only if the condition
(14) holds, while the system (1) has transcritical bifurcation
near (Eg) if the condition (18) holds. The disease free for

males equilibrium point (E;) exists when 1=0 and locally

stable if and only if the conditions (11) hold and it is globally
stable if and only if the conditions (15a)-(15b) hold, in
additon the system (1) near (E;) has transcritical

bifurcation if the condition (19) holds. The disease free for
females equilibrium point (E,) exists when 1*=0 and

locally stable if the conditions (12) hold, while it is globally
stable if and only if the conditions (16a)-(16b) hold, in
addition the system (1) near (E,) has transcritical

bifurcation if the condition (20) holds. Moreover, the
endemic equilibrium point (E3) of system (1) exists if and

only if condition (D, >0) holds, and locally stable if and

only if the conditions (13) hold, while it is globally
asymptotically stable if and only if the conditions (17a)-
(17e) hold. In fact, the system (1) has no any type of
bifurcation (saddle-node, pichforck, and transcritical
bifurcation). Finally, to understand the effect of varying each
parameter on the global system (1) and confirm our above
analytical results, the system (1) has been solved
numerically for different sets of initial points and different
sets of parameters given by equation (21), and the following
observations are made:

1. The system (1) do not has periodic dynamic,
instead it they approach either to the disease
free equilibrium point or else to endemic
equilibrium point.

2. As the incidence rate of disease (external
incidence rate or contact incidence rate)
increase, the asymptotic behavior of the
systems (1) transfer from approaching to
disease free equilibrium point to the endemic
equilibrium point.

3. Asthe disease related death rate in the systems
(1) increase then the solution in the system will
be transfer from stability at endemic equilibrium
point to stability at disease free equilibrium
point.
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