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ABSTRACT: In this paper a mathematical model that describes the spread of sexual infectious disease in a population is proposed and studied. It is 
assumed that the disease divided the population into four classes: susceptible individuals of males (S), infected individuals of males (I), susceptible 

individuals of females )( S and infected individuals of females )( I . The impact of contact between of population and external sources of disease for 

example (blood and other), on the dynamics of ISIS  epidemic model is investigated. The existence, uniqueness and boundedness of the solution of 

the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation in the model is investigated. Finally 
the global dynamics of the proposed model is studied numerically.  
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1. INTRODUCTION 
Sexually transmitted diseases are one of the serious 
diseases faced on human life at the moment due to the 
spread of disease, the difficulty to control it, and the lack of 
its treatment. One of these diseases is the disease of HIV / 
AIDS which causes the death and Killing about 2 million 
people all over the world. While, the number of new 
infections may be even more than 2 million, which shows 
that the problem in the spread of the disease more severe 
and dangerous in the future. Moreover, the vast majority of 
the populations living To HIV / AIDS are female, where 
women represent 50% of people in most developed 
countries [1]. The first mathematical model that describes 
sexual diseases, or diseases transmitted through sex is 
Cook and Yorke [2] and systems for the disease was one-
sex model. Lajmanovich and Yorke [3], Studied a special 
system for gonorrhea consists of two-sex model. To 
address the seriousness of the disease and provide a better 
understanding and more clarity predictions of the behavior 
of the spread of the disease has been the development of 
many forms of mathematical models and applied to the 
epidemic of HIV / AIDS, for example, Knox, E. G. [4] is 
studied the transmission of AIDS. Anderson, R. M., Medley, 
G.; May, F.R. M. and Johnson, A. M. A. [5] show a 
preliminary study of the dynamics of AIDS. Anderson, R. M. 
[6], the role of mathematical models in the study of the 
transmission of AIDS. Dietz, K.; Heesterbeek, J. A. P. and 
Tudor,D.W. [7], the effects of infection with HIV. Dietz, K. [8] 
studied Transmission Dynamics of HIV. Brauer, F. and 
Castillo-Chavez, C. [9] studied a group of Mathematical 
Models of AIDS disease. And Levin, B.R., Bull, J.J. and 
Stewart, F.M. [10] offered study of Evolution, and Future of 
the HIV/AIDS Pandemic. In this paper we proposed and 
studied a mathematical model consisting of 

ISIS epidemic model, it is assumed that the disease 

transmitted by contact as well as external sources. The 
local as well as global stability analysis of the model is 
investigated. Also, the local bifurcation is discussed. 
  

2. The mathematical model  
Consider a simple epidemiological model in which the total 
population ( say N(t) ) at time  t  is divided in to fore sub 
classes the susceptible individuals of males  S(t), 

susceptible individuals of females  )(tS , infected 

individuals of males  I(t) and infected individuals of 

females  )(tI  which represented in the block diagram 

given by figure (1).  
 

 
 

Figure (1):  Block diagram of system (1). 
 

Can be represented by the following system of 
nonlinear ordinary differential equations: 
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Here  2,1,0  ii  are recruitment rate of the 

population ( Males and Females ) respectively, 0   is 

the natural death rate of each population, 2,1,0  idi  

are the disease related death rate, 2,1,0  ii  are the 

infected rate (incidence rate) of the susceptible 
individuals (Males and Females) respectively due- to 
directed contact with the infected individuals and we 
assumed that the disease in the above model will 
transmitted between the population individuals by 
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contact as well as external sources of disease for example 
(Blood, Medical tools, etc) with an external incidence rate  

4,3,0  ii . Therefore at any point of time t   the total 

number of population becomes )()()()( tItStItSN   . 

Obviously, due to the biological meaning of the variables 

)(),(),( tStItS  and )(tI , in system (1) has the domain 
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
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 ISISRISISR  . This is 

positively invariant for system (1). Clearly, the interaction 
functions on the right hand side of system (1) are 
continuously differentiable. In fact they are Liptschizan 

function on 4
R . Therefore the solution of system (1) exists 

and unique. Further, all solutions of the system (1) with 
non-negative initial conditions are uniformly bounded as 
shown in the following theorem.   
 
Theorem (1) :  All the solutions of system (1), which are 

initiate in 4
R , are uniformly bounded. 

 

Proof:  Let  )(),(),(),( tItStItS   be any solution of the 

system (1) with non-negative initial conditions 

 )0(),0(),0(),0(  ISIS  . Since )()()()( tItStItSN   , 
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This gives 
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Now, by using Gronwall Lemma [11], it obtains that: 
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Which complete the proof.                                        ■ 
                                                                                                                             

3. Existence of equilibrium point of system (1) 
The system (1) has at most fore biologically feasible points, 

namely 3,2,1,0,),,,(   iISISE iiiii . The existence 

conditions for each of these equilibrium points are 
discussed in the following: 
 

1) If  0 II , then the system (1) has an 

equilibrium point called a disease free 
equilibrium point and denoted by  

)0,,0,( 000
 SSE  where: 
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2)   If   0I , then the system (1) has equilibrium point 

called a male's disease free equilibrium point and 

denoted by  ),,0,( 1111
 ISSE  where 

11 ,SS  and  
1I  

represented the positive solution of following set of 
equations: 
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From equation (1) and (2) of above system we get: 
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Now, substituting  
1S   in equation (3) of system (3) we 

get: 
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3)   If    0I , then the system (1) has equilibrium point 

called a female's disease free equilibrium point and 

denoted by  )0,,,( 2222
 SISE  where 

222 ,, SIS   

represented the positive solution of the following set of 
equations: 
 

 

0

0)(

0)(

2

13

31







S

IdS

S







                                              (5) 

 
From equations (1) and (3) of above system we get: 
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Now, substituting 2S   in equation (2) of system (5) we get: 

 

 
))(( 13

31
2










d
I                                         (6b) 

 

4)   If   0I  and  0I  then the system (1) has an 

equilibrium point called endemic equilibrium point and 

denoted by  ),,,( 33333
 ISISE   where  

333 ,, SIS  and 
3I  

represented the positive solution of the following set of 
equations: 
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Straightforward computation to solve the above system of 
equations and from equation (1), (2) and (3) of system (7) 
gives that: 
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Now, substituting 3I and 
3S   in equation (4) of system (7) 

we get: 
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Here 
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Clearly, equation (9) has a unique positive root by  
3I  and 

then  )( 3E  exists uniquely in Int. 4
R  if and only if   02 D .  

 

4. Local stability analysis of system (1) 
In this section, the local stability analysis of the equilibrium 

points  3,2,1,0, iEi  of the system (1) studied as shown in 

the following theorems. 

Theorem (2): The disease free equilibrium point  

)0,,0,( 000
 SSE  of system (1) is locally asymptotically 

stable if the following condition is satisfied: 
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Proof:    The Jacobian matrix of system (1) at  )( 0E  

can be written as: 
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Now, according to Gersgorin theorem if the following 
condition holds: 
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Then all eigenvalues of  )( 0EJ  exists in the region: 
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Therefore, according to the given condition (10) all the 

eigenvalues of )( 0EJ  exists in the left half plane and 

hence, 0E  is locally asymptotically stable.   ■ 

 
Theorem (3):   The male's disease free equilibrium 

point ),,0,( 1111
 ISSE  of system (1) is locally 

asymptotically stable if the following condition is 
satisfied: 
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Proof:   The Jacobian matrix of system (1) at )( 1E  can 
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Now, according to Gersgorin theorem if the following 
condition holds: 
 

 





4

1
ji

i

ijii bb  

 

Then all eigenvalues of  )( 1EJ  exists in the region: 
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Therefore, according to the given condition (11) all the 

eigenvalues of )( 1EJ  exists in the left half plane and hence, 

1E  is locally asymptotically stable.      ■ 

 
Theorem (4):   The female's disease free equilibrium point 

)0,,,( 2222
 SISE  of system (1) is locally asymptotically 

stable if the following condition is satisfied: 
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Proof :   The Jacobian matrix of system (1) at )( 2E  can be 

written as: 
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Now, according to Gersgorin theorem if the following 
condition holds: 
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Then all eigenvalues of  )( 2EJ  exists in the region: 
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Therefore, according to the given condition (12) all the 

eigenvalues of )( 2EJ  exists in the left half plane and 

hence, 2E  is locally asymptotically stable.      ■ 

Theorem (5):  The endemic equilibrium point 

),,,( 33333
 ISISE  of system (1) is locally 

asymptotically stable if the following condition is 
satisfied: 
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Proof:   The Jacobian matrix of system (1) at )( 3E  can 

be written as: 
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Now, according to Gersgorin theorem if the following 
condition holds: 
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Then all eigenvalues of  )( 3EJ  exists in the region: 
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Therefore, according to the given condition (13) all the 

eigenvalues of )( 3EJ  exists in the left half plane and 

hence, 3E  is locally asymptotically stable.              ■ 

 

5. Globally stability of system (1)  
In this section, the global dynamics of system (1) is 
studied with the help of Lyapunov function as shown in 
the following theorems. 
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Clearly, RRV 
4

1 :  is a continuously differentiable function 

such that ,0)0,,0,( 001 SSV  

and )0,,0,(),,,(,0),,,( 001
  SSISISISISV . Further 

we have: 
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By simplifying this equation we get: 
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Obviously, 01 
dt

dV
, and then 1V  is a Lyapunov function 

provided that condition (14) hold. Thus 0E  is globally 

asymptotically stable in the interior of ),( 0EB  which means 

that )( 0EB  is the basin of attraction and that complete the 

proof.                                                                                    ■ 
 
Theorem (7):  Assume that, the male's disease free 

equilibrium point 1E  of system (1) is locally asymptotically 

stable. Then the basin of attraction of 1E , say  4
1)(  REB ,  

it is globally asymptotically stable if satisfy the following 
conditions: 
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Proof: Consider the following positive definite function: 
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Clearly, RRV 
4

2 :  is a continuously differentiable function 

such that ,0),,0,( 1112  ISSV  

and ),,0,(),,,(,0),,,( 1112
  ISSISISISISV . Further 

we have: 
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By simplifying this equation we get: 
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Therefore, according to condition (15a) it is obtain that: 
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Obviously, 02 
dt

dV
 for every initial points satisfying 

conditions (15b) and then 2V  is a Lyapunov function 

provided that conditions (15a)-(15b) hold. Thus 1E  is 

globally asymptotically stable in the interior of  ),( 1EB  

which means that  )( 1EB  is the basin of attraction and 

that complete the proof.          ■ 
 
Theorem (8):  Assume that, the female's disease free 

equilibrium point 2E  of system (1) is locally 

asymptotically stable. Then the basin of attraction of 

2E , say  4
2)(  REB ,  it is globally asymptotically 

stable if satisfy the following conditions: 
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        ISIINdIISSIN 21221224 )(             (16b) 

 
Proof: Consider the following positive definite function: 
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learly, RRV 
4

3 :  is a continuously differentiable 

function such that ,0)0,,,( 2223 SISV  

and )0,,,(),,,(,0),,,( 2223
  SISISISISISV . 

Further we have: 
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By simplifying this equation we get: 
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Therefore, according to condition (16a) it is obtain that: 
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Obviously, 03 
dt

dV
 for every initial points satisfying 

conditions (16b) and then 3V  is a Lyapunov function 

provided that conditions (16a)-(16b) hold. Thus 2E  is 

globally asymptotically stable in the interior of  ),( 2EB  

which means that  )( 2EB  is the basin of attraction and that 

complete the proof.        ■ 
 

Theorem (9):   Let the endemic equilibrium point 3E  of 

system (1) is locally asymptotically stable. Then it is globally 
asymptotically stable provided that: 
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Proof: Consider the following positive definite function: 
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Clearly, RRV 
4

4 :  is a continuously differentiable 

function such that 0),,,( 33334  ISISV  and 

),,,(),,,(,0),,,( 33334
  ISISISISISISV . Further, we 

have: 
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By simplifying this equation we get: 
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Therefore, according to the conditions (17a)-(17e) we 
obtain that: 
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Clearly, 04 
dt

dV
, and then 4V  is a Lyapunov function 

provided that the given conditions hold. Therefore, 3E   

is globally asymptotically stable.              ■ 
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6. Local bifurcation analysis of system (1) 
In this section, the effect of varying parameter on the 
dynamical behavior of the system (1) around each 
equilibrium points is studied. Recall that the existence of 
non-hyperbolic equilibrium point of the system (1) is the 
necessary but not sufficient condition for bifurcation to 
accurse. Therefore, in the following theorems and 
application to the Sotomayor’s theorem for local bifurcation 
[13], is adapted. 
 

Local bifurcation near )( 0E : 

Theorem (10): The system (1) at the disease free 

equilibrium point )( 0E  with the parameter 
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1) No saddle-node bifurcation 
2) No pitchfork bifurcation  
3) A transcritical bifurcation 

 

Proof:  According to Jacobian matrix )( 0EJ  given by 

equation (12) the system (1) at the disease free equilibrium 
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  0)(det 0 EJ , therefore, 
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candidate bifurcation parameter, and the Jacobian matrix  

)( 0EJ  with   0
11     becomes:  
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Further the eigenvector (say    TkkkkK 4321
0 ,,, ) 

corresponding to  0  satisfy the following: 
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   034
202 



k
N

kS



                        (18c) 

 

   04234
202 



kdk
N

kS



                 (18d) 

 
So by solving the above system of equations we get: 
 

 434241 ;; zkkqkkpkk   

 
Where: 
 

 

 

 
 

  
 

   143
2

002
0

1

13

0
0

1

3

0
0

1

dN

SS
z

dN

S
q

N

S
p
























 

 

Here  4k   be any non zero real number. Thus 

 

  



























4

4

4

4

0

k

zk

qk

pk

K  

 

Similarly the eigenvector    TwwwwW 4321
0 ,,,  that 

corresponding to 0  of  TJ0
~

  can be written: 

 

 

 

 

 
   

 

0

0

00

0
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~

4

3

2

1

2
0

0
10

0
1

44

0202
1

33

0
0





























































w

w

w

w

d
N

S

N

S

N

S

N

S
d

WJ T











 

 
This gives: 
 

  























4

4

4

4

0

w

yw

mw

xw

W  

 
Where 
 

 

   

  

 
























4

4

14

042

143

0432

y

dN

S
m

dN

S
x

 

 

Here  4w   be any non zero real number. Now, rewrite 

system (1) in a vector form as: 
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 )(Xf
dt

dX
  

 

Where   TISISX  ,,,  and  Tfffff ),,,( 4321  with  

4,3,2,1, ifi  are given in system (1), and then determine 

1
1




f
d

df
   we get that: 

 

 































0

0

1
N

SI

N

SI

f   Then    





















0

0

0

0

),(
0

101
 Ef  

 
Therefore: 
 

    
0),(

0
10

0
1

  EfW
T

 

 
Consequently, according to Sotomayor theorem [13] the 

system (1) has no saddle-node bifurcation near 0E  at  0
1 . 

Now in order to investigate the accruing of other types of 

bifurcation, the derivative of  
1

f  with respect to vector X, 

say   
),,(

0
101
 EDf  is computed 

 

  


























0000

0000

000

000

),(
0

0

0
101 N

S
N

S

EDf     

 
So 
 

          0),( 44000
10

0
1

 mx
N

wkS
KEDfW

T
  

 
Again, according to Sotomayor theorem, if in addition to the 
above, the following holds 
 

          0),(),( 000
10

20  KKEfDW
T

  

 

Here  
),(

0
10 EDf  is the Jacobian matrix at 0E  and  0

1 , 

then the system (1) possesses a transcritical bifurcation but 
no pitch-fork bifurcation can occur. Now since we have that: 
 

       





































N

qzk

N

qzk

N

pk

N

pk

KKEfD

2
42

2
42

2
41

2
41

000
10

2

2

2

2

2

),(),(









   

 
Therefore: 
 

 

        

    01
22

),(),(

4
2
424

2
41

000
10

20





y
N

wqzk
mx

N

wpk

KKEfDW
T





 

 

Then the system (1) has a transcritical bifurcation at 0E  

when the parameter 1  passes through the bifurcation 

value  0
1 .                                                                                                                                   

 

Local bifurcation near )( 1E : 

Theorem (11): The system (1) at the male's disease 

free equilibrium point )( 1E  with the parameter 

      

 








113111

211134
3

1
2

INSSN

ddNINN




   has: 

1) No saddle-node bifurcation 
2) No pitchfork bifurcation  
3) A transcritical bifurcation 

 

Proof:  According to Jacobian matrix )( 1EJ  given by 

equation (13) the system (1) at the male's disease free 

equilibrium point )( 1E  has zero eigenvalue  0
~
say  

if and only if   0)(det 1 EJ , therefore, 

      

 








113111

211134
3

1
2

INSSN

ddNINN




   is 

taken as a candidate bifurcation parameter, and the 

Jacobian matrix  )( 1EJ  with   1
22     becomes:  

 

 

 

 

 
































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
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
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







)(0

0)(0
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00)(

0
~

24
1

1
2

4
1

1
2
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1
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3

1111
3

1

d
N

S

N

S

N

S
d

N

I

N

S

N

I
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



















 

 

Further the eigenvector (say    TkkkkK 4321
1 ,,, ) 

corresponding to  0
~
  satisfy the following: 

 

    11
1

~
KKJ    Then  

01
1 KJ  
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From which we get that: 
 

 0411
1

11
3 


















N

kS
k

N

I 



                   (19a) 

 

 0)( 411
211

11
3 


















N

kS
kdk

N

I 



        (19b) 

 

 

 
  034

21
1
2 



k
N

kS



                         (19c) 

 

 

 
  04234

21
1
2 



kdk
N

kS



                    (19d) 

 
So by solving the above system of equations we get: 
 

 434241 ;; zkkqkkpkk   

 
Where: 
 

 
  
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   











NINdN
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z

NINd

S
q
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p
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











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1
2
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Here  4k   be any non zero real number. Thus 

 

  






















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
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4

4

4

1

k

zk

qk

pk

K  

 

Similarly the eigenvector    TwwwwW 4321
1 ,,,  that 

corresponding to 0
~
  of TJ1  can be written: 
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   

 
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
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
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w

w

w

w

d
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S

N

S
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S
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S
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I
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I
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

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
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This gives: 
 

  
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
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
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
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

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Where 
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Here  4w   be any non zero real number. Now, rewrite 

system (1) in a vector form as: 
 

 )(Xf
dt

dX
  

Where   TISISX  ,,,  and  Tfffff ),,,( 4321  with  

4,3,2,1, ifi  are given in system (1), and then 

determine 
2

2



f

d

df
   we get that: 

 

 































N
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N
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f

0

0

1
  then    





















0

0

0

0
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1
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 Ef  

 
Therefore: 
 

    
0),(

1
21

1
2

  EfW
T

 

 
Consequently, according to Sotomayor theorem [13] the 

system (1) has no saddle-node bifurcation near 1E  

at  1
2 . Now in order to investigate the accruing of other 

types of bifurcation, the derivative of  
2

f  with respect 

to vector X, say  
 

),,(
1
212

 EDf  is computed 

 

  
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



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
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1
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So 
 

          01),( 4411
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

y
N
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KEDfW

T
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Again, according to Sotomayor theorem, if in addition to 
the above, the following holds 
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          0),(),( 111
21

21  KKEfDW
T

  

 

Here  
),(

1
21 EDf  is the Jacobian matrix at 1E  and  1

2 , then 

the system (1) possesses a transcritical bifurcation but no 
pitch-fork bifurcation can occur. Now since we have that: 
 

       
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Therefore: 
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Then the system (1) has a transcritical bifurcation at 1E  

when the parameter 2  passes through the bifurcation 

value  1
2 .                                                                          ■ 

 

Local bifurcation near )( 2E : 

 
Theorem (12): The system (1) at the male's disease free 

equilibrium point )( 2E  with the parameter 

      

  
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2
1
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  has: 

1) No saddle-node bifurcation 
2) No pitchfork bifurcation  
3) A transcritical bifurcation 

 

Proof:  According to Jacobian matrix )( 2EJ  given by 

equation (14) the system (1) at the male's disease free 

equilibrium point )( 2E  has zero eigenvalue  0say  if 

and only if   0)(det 2 EJ , therefore, 

      

  










422222

212243
3

2
1
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  is taken 

as a candidate bifurcation parameter, and the Jacobian 

matrix  )( 2EJ  with   2
11     becomes:  
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Further the eigenvector (say    TkkkkK 4321
2 ,,, ) 

corresponding to  0  satisfy the following: 

 

    22
2

ˆ KKJ    Then    0ˆ 2
2 KJ  

 
From which we get that: 
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So by solving the above system of equations we get: 
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Here  4k   be any non zero real number. Thus 
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Similarly the eigenvector    TwwwwW 4321
2 ,,,  that 

corresponding to 0  of  TJ2
ˆ  can be written: 
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This gives: 
 

  























4

4

4

4

2

w

yw

mw

xw

W  

 
Where 
 

 

   

  













NIN

IN
y

dNIN

S
m

dNIN

S
x
















224

224

1224

22

12243

232

 

 

Here  4w   be any non zero real number. Now, rewrite 

system (1) in a vector form as: 
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4,3,2,1, ifi  are given in system (1), and then determine 
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Therefore: 
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Consequently, according to Sotomayor theorem [13] the 

system (1) has no saddle-node bifurcation near 2E  at  2
1 . 

Now in order to investigate the accruing of other types of 

bifurcation, the derivative of  
1

f  with respect to vector 

X, say   
),,(
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So 
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Again, according to Sotomayor theorem, if in addition to 
the above, the following holds 
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Here  
),( 2

12 EDf  is the Jacobian matrix at 2E  

and  2
1 , then the system (1) possesses a transcritical 

bifurcation but no pitch-fork bifurcation can occur. Now 
since we have that: 
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Therefore: 
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Then the system (1) has a transcritical bifurcation at 2E  

when the parameter 1  passes through the bifurcation 

value  2
1 .                                                                 ■ 

 

Local bifurcation near )( 3E : 

The occurrence of local bifurcation near the endemic 

equilibrium point )( 3E of system (1) is also studied. Not 

that, it is well known that the necessary condition of the 
system (1) to have a local  bifurcation (saddle-node, 

transcritical and pitchfork bifurcation) around )( 3E  at a 

specific parameter are given by,    0)(det 3 EJ , where 
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)( 3EJ  represent the Jacobian matrix  of the system (1). 

Now since the condition that guarantee to make 

  0)(det 3 EJ  does not exist. Hence there is no possibility 

of occurrence of local bifurcation. 
 

7.  Numerical analysis of systems (1): 
In this section, the global dynamic of system (1) is studied 
numerically. The objectives of this study are confirming our 
obtained analytical results and understand the effects of 
contact and existence of the external sources for disease 

on the dynamic of ISIS epidemic model. Consequently, 

the system (1) is solved numerically for different sets of 
initial conditions and for different sets of parameters. It is 
observed that, for the following set of hypothetical 

parameters given equation (21) with 4,3,2,1,0  ii   that 

satisfies stability condition (10) of disease free equilibrium 
point, system (1) has a globally asymptotically stable 
endemic equilibrium point as shown in following figure.     
  

 
4.0,5.0,3.0,0003.0,0001.0

,002.0,0002.0,400,500

2143

2121





dd


        (21) 

 

 
Figure (2): Time series of the solution of system (1). (a) 

trajectories of S , (b) trajectories of  I, (c) trajectories of 
S and (d) trajectories of I . The solid line refers to the 

trajectory started at (2000, 1500, 2500, 1000), while the 
dotted line refers to the trajectory started at (900, 500, 700, 

700). 
 
Obviously, Figure (2) shows clearly the convergence of 
system (1) to the disease free equilibrium point 

)0,1333,0,1667(0 E  asymptotically from two different initial 

points. However, for the data given equation (21) with 

3,1,0  ii . The trajectories of system (1) starting from 

different sets of initial data are drawn in Figure. (3). 

 
 
Figure (3): Time series of the solution of system (1). (a) 
trajectories of S , (b) trajectories of  I, (c) trajectories of 
S and (d) trajectories of I . The solid line refers to the 

trajectory started at (3000, 2500, 2500, 3000), while the 
dotted line refers to the trajectory started at (200, 900, 

500, 1000). 
 
Obviously, Figure (3) shows clearly the convergence of 
system (1) to the infected free of male equilibrium point 

)57.0,1332,0,1667(1 E  asymptotically from two different 

initial points. However, for the data given equation (21) 

with 4,2,0  ii . The trajectories of system (1) starting 

from different sets of initial data are drawn in Figure. 
(4). 

 
Figure (4): Time series of the solution of system (1). (a) 
trajectories of S , (b) trajectories of  I, (c) trajectories of 
S and (d) trajectories of I . The solid line refers to the 

trajectory started at (2000, 2000, 1500, 1500), while the 
dotted line refers to the trajectory started at (500, 1000, 

200, 500). 
 
Obviously, Figure (4) shows clearly the convergence of 
system (1) to the infected free of female equilibrium 

point )0,1333,20.0,1666(2 E  asymptotically from two 

different initial points. Now, for the data given equation 
(21), the trajectories of system (1) starting from different 
sets of initial data are drawn in Figure. (5). 
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Figure (5): Time series of the solution of system (1). (a) 
trajectories of S , (b) trajectories of  I, (c) trajectories of 
S and (d) trajectories of I . The solid line refers to the 

trajectory started at (3000, 2500, 2500, 2000), while the 
dotted line refers to the trajectory started at (100, 2000, 

250, 1000). 
 
Obviously, Figure (5) shows clearly the convergence of 
system (1) to the endemic equilibrium point 

)57.0,1332,20.0,1666(3 E  asymptotically from two different 

initial points. Now the effect of increasing the incidence rate 
of disease resulting by external sources of susceptible of 
males on the dynamics of system (1) is studied by solving 
the system numerically for the parameters values 

5.0,3.0,0001.03   respectively, keeping other 

parameters fixed as given in equation (21), and then the 
trajectories of system (1) are drawn in Figures (6a)-(6c) 
respectively. Note that, in the next figures (6-9), we will use 
the following representations: Solid line for describing 
trajectory of  S; dashed line for describing trajectory of  I; 

dot line for describing trajectory of  S ; dash dot line for 

describing trajectory  of I and starting at (2000, 3000, 
3000, 500). 
 

 

 
 

 
 

Figure (6):  Time series of the solution of system (1). 

(a) for 0001.03  , (b) for 3.03  , (c) for 5.03  . 

 
According to Figure (6), as the incidence rate of disease 
resulting by external source increases (through 

increasing 3 ), then the trajectory of system (1) 

approaches asymptotically to the endemic equilibrium 

point. In fact as 3  increases it is observed that the 

number of susceptible of (males and females) decrease 
and the number of infected of (males and females) 
individuals increases. Similar results are obtained, as 

those shown in case of increasing 3 , in case of 

increasing the incidence rate of disease resulting by 
contact between (susceptible of males and infected of 

females), that is means increasing 1 and keeping other 

parameters fixed as given in (21). The effect of 
increasing the incidence rate of disease resulting from 
external sources of females on the dynamics of system 
(1) is studied by solving the system numerically for the 

parameters values 7.0,2.0,0001.04   respectively, 

keeping other parameters fixed as given in equation 
(21), and then the trajectories of system (1) are drawn 
in Figures (7a)-(7c) respectively.  
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Figure (7):  Time series of the solution of system (1). (a) 

for 0001.04  , (b) for 2.04  , (c) for 7.04  . 

 
According to Figure (7), as the incidence rate of disease 
resulting from external sources of females increases then 
the trajectory of system (1) approaches asymptotically to 

the endemic equilibrium point. In fact as 4  increases it is 

observed that the number of susceptible of (males and 
females) decrease and the number of infected of (males 
and females) individuals increases. Similar results are 

obtained, as those shown in case of increasing 4 , in case 

of increasing the incidence rate of disease resulting by 
contact between (susceptible of females and infected of 

males), that is means increasing 2 and keeping other 

parameters fixed as given in (21). In the following, system 
(1) is solved numerically for the following values of disease 
related death rate of infected of males 

5,3,5.01 d keeping other parameters fixed as given in 

equation (21), and then the trajectories of system (1) are 
drawn in Figures (8a)-(8c) respectively. 

 
 

 
 

 
Figure (8):  Time series of the solution of system (1). 

(a) for 5.01 d , (b) for 31 d , (c) for 51 d . 

 
Obviously from these figures, as the disease related 
rate of males increases the trajectory of system (1) 
approaches asymptotically to the endemic equilibrium 
point and the number of susceptible individuals of 
(males and females) increase and decreasing in the 
numbers of the infected individuals of ( males and 
females). Similar results are obtained, as those shown 

in case of increasing 1d , in case of increasing the 

disease related rate of females, that is means 

increasing 2d and keeping other parameters fixed as 

given in (21). 
 

8. Conclusion and discussion: 
In this paper, we proposed and analyzed an 
epidemiological model that described the dynamical 
behavior of an epidemic model, where the infectious 
disease transmitted directly from external sources as 
well as through contact between them. The model 
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included fore non-linear autonomous differential equations 
that describe the dynamics of fore different populations 

namely susceptible of males ),(S   infected of males ),(I  

susceptible of female ),( S  infected of females )( I . The 

boundedness of system (1) has been discussed. The 
conditions for existence, stability and bifurcation for each 
equilibrium points are obtained. Further, it is observed that 

the disease free equilibrium point  0E  exists when 

0 II  and locally stable if and only if the condition (10) 

holds, while it is globally stable if and only if the condition 
(14) holds, while the system (1) has transcritical bifurcation 

near  0E  if the condition (18) holds. The disease free for 

males equilibrium point  1E  exists when 0I  and locally 

stable if and only if the conditions (11) hold and it is globally 
stable if and only if the conditions (15a)-(15b) hold, in 

addition the system (1) near  1E  has transcritical 

bifurcation if the condition (19) holds. The disease free for 

females equilibrium point  2E  exists when 0I  and 

locally stable if the conditions (12) hold, while it is globally 
stable if and only if the conditions (16a)-(16b) hold, in 

addition the system (1) near  2E  has transcritical 

bifurcation if the condition (20) holds. Moreover, the 

endemic equilibrium point  3E  of system (1) exists if and 

only if condition  02 D  holds, and locally stable if and 

only if the conditions (13) hold, while it is globally 
asymptotically stable if and only if the conditions (17a)-
(17e) hold. In fact, the system (1) has no any type of 
bifurcation (saddle-node, pichforck, and transcritical 
bifurcation). Finally, to understand the effect of varying each 
parameter on the global system (1) and confirm our above 
analytical results, the system (1) has been solved 
numerically for different sets of initial points and different 
sets of parameters given by equation (21), and the following 
observations are made: 

1. The system (1) do not has periodic dynamic, 
instead it they approach either to the disease 
free equilibrium point or else to endemic 
equilibrium point. 

2. As the incidence rate of disease (external 
incidence rate or contact incidence rate) 
increase, the asymptotic behavior of the 
systems (1) transfer from approaching to 
disease free equilibrium point to the endemic 
equilibrium point. 

3. As the disease related death rate in the systems 
(1) increase then the solution in the system will 
be transfer from stability at endemic equilibrium 
point to stability at disease free equilibrium 
point.  
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