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ABSTRACT:Considering the continuity of a data stream, the accessed windows information of a data stream may not be useful as a concept change is 
effected on further data. In order to support frequent item mining over data stream, the interesting recent concept change of a data stream needs to be 
identified flexibly. Based on this, an algorithm can be able to identify the range of the further window. A method for finding frequent itemsets over a data 
stream based on a sliding window has been proposed here, which finds the interesting further range of frequent itemsets by the concept changes 
observed in recent windows. 
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1. INTRODUCTION 

Data mining concepts and methods can be applied in 
various fields like marketing, medicine, real estate, 
customer relationship management, engineering, web 
mining etc. Frequent itemset mining  has become one of 
the important subjects of data mining. Recently, there has 
been much interest in data arriving in the form of 
continuous and infinite data streams, which arise in several 
application domains like high-speed networking, financial 
services, e-commerce and sensor networks. Data-stream 
mining is a technique which can find valuable information 
or knowledge from primitive data. Unlike mining static 
databases, mining data  streams  poses many new 
challenges. First, each data element should be examined at 
most once. It is unrealistic to keep the entire stream in the 
main memory. Second, the memory usage for mining data 
streams should be bounded even though new data 
elements are continuously generated. Third, each data 
element in data streams should be processed as fast as 
possible. Finally, the results generated by the online 
algorithms should be instantly available when user 
requested.In this paper we consider mining recent frequent 
item sets in sliding windows over data streams and 
estimate their true frequencies, while making use of dynamic 
sliding windows according to the concept change occurred in the 
incoming data. Concept refers to the target variables, which 
the model is trying to predict or to describe. Concept 
change is the change of the underlying concept over time. 
The concept change is a known phenomenon in data 
stream processing due to dynamic nature of incoming data 
[1]. The concept change makes frequent itemset mining in 
data streams even more challenging than traditional static 
databases. In this study, the aim is to measure the amount 
of changes in the set of frequent patterns and to exploit it by 
dynamically adjusting the window size. The sliding window 
model is an interesting model to mine frequent patterns 
over data streams. This model tries to handle the concept 
change by considering only recent arrived data. The 
window is usually stored and maintained within the main 
memory for fast processing[1]. In order to overcome the 
problem of determing the window size, with motivation 
gained from the research article “Towards a variable size 

sliding window model for frequent itemset mining over data 
streams”, here we propose a frequent itemset mining model 
for Data streams, which can be referred as “concept 
change aware dynamic sliding window based frequent 
itemset mining over data steams”.  The main objective the 
proposal is to investigate the problem of flexible size sliding 
window for frequent itemset mining over data streams in 
regard to justify the proposed model. In this proposed 
model, the process of continuous monitoring to observe the 
amount of change in the set of frequent patterns will be 
adopted. The window size should adaptively adjust, which 
is based on the observed amount of concept change within 
the incoming data stream and should expand or reduce 
according to the state of change. The rest of the paper is as 
follows. The next section presents a review on related 
works. Problem statement is described in Section 3 
Sections 4 describe the most relevant features of the 
algorithm implementation, while the experimental results 
are reported and discussed in Section 5. Finally Section 6 
concludes the paper. 
 

2. LITERATURE SURVEY 
Finding frequent item sets in a set of transactions is a 
popular method for so-called market basket analysis, which 
aims at finding regularities in the shopping behavior of 
customers of supermarkets, mail-order companies, on-line 
shops etc. In particular, it is tried to identify sets of products 
that are frequently bought together. The first algorithm for 
frequent patterns mining over data streams was proposed 
by Manku and Motwani (2002) where the authors started 
with frequent items mining and then extended their idea to 
frequent itemset mining. Every single item coming from the 
data streams is considered as a transaction in frequent item 
mining. Sliding window is one of the useful and widely used 
model for datastream processing and mining. Chang et al. 
utilized an information decay model to differentiate the 
information of recent transactions from the information of 
old transactions. Based on the work by Karp et al on 
computing frequent items, Jin et al. proposed another one-
pass algorithm, STREAM, to compute approximate frequent 
itemsets over entire data streams. Chang et al proposed a 
sliding window method of finding recent frequent itemsets 
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over a data stream based on the estimation mechanism of 
the Lossy Count-ing algorithm. Lin et al. introduced an 
efficient algorithm for mining frequent itemsets over data 
streams under the time-sensitive sliding-window model. The 
SWIM (Mozafari et al., 2008) is another pane based 
algorithm in which frequent itemsets in one pane of the 
window are considered for further analysis to find frequent 
itemsets in whole of the window. It keeps the union of 
frequent patterns of all panes and incrementally updates 
their supports and prunes infrequent ones. There are a 
number of studies related to diagnosing change in data 
streams (Aggarwal, 2003; Kifer, Ben-David, & Gehrke, 
2004; Tao & Ozsu, 2009). These methods are mainly based 
on approximating underlying probability distribution that the 
incoming data stream is generated based on. Koh and Lin 
(2009) proposed a method to estimate and detect concept 
shift of frequent patterns over data streams. Ng and Dash 
(2008) proposed a test strategy to alarm the user about 
detecting change in data streams. In contrast to (Koh & Lin, 
2009) and (Ng & Dash, 2008), an approach which 
dynamically updates the set of frequent itemsets over data 
streams and measures the precise value of concept change 
is more desirable and applicable to real data streams. Such 
an approach is exploited by (Mahmood Deypir & Sattar 
HAshemi, 2012)  in a flexible size sliding window frequent 
itemset mining to adjust the window size dynamically 
according to concept changes within a data stream. 
 

3. PROBLEM STATEMENT 

The dynamic sliding window model is an interesting model 
to mine frequent patterns over data streams. This model 
tries to handle the concept change by considering only 
recent arrived data. For fast processing, the window is 
usually stored and maintained within the main memory. The 
context variation window is initialized with some percentage 
of the normal window and then the items coming from data 
streams are first initialized to normal window based on 
minimum window size. After that the incoming records are 
checked with the records present in the normal window and 
stored in the context window based on the similarity metric. 
Here we used Jaccard Similarity coefficient to check the 
similarity between the item sets. If the items are similar that 
is having less jaccard distance then those are placed in the 
normal window and the window is finalized. If the items are 
having more jaccard distance then it means the concept 
change occurred so with out inserting the new records it 
finalizes the normal window and  it creates a new window 
and stores the records in the context window in next 
window and again the incoming records are calculated and 
inserted and so on. Like this the incoming items are stored 
according to the similarity at initial stages only. Then the 
frequent item sets are calculated for the finalized windows. 
Here we used Eclat algorithm for finding frequent itemsets 
and association rules are formed for the frequent itemsets 
to perform recommendations. 
 

3.1 Jaccard Similarity: 
The Jaccard index, also known as the Jaccard similarity 
coefficient, is a statistic used for comparing the similarity 
and diversity of sample sets. The Jaccard coefficient 
measures similarity between finite sample sets, and is 
defined as the size of the intersection divided by the size of 
the union of the sample sets: 

 
 
(If A and B are both empty, we define J(A,B)=1.) Clearly, 

 

 
 
The Jaccard distance, which measures dissimilarity 
between sample sets, is complementary to the Jaccard 
coefficient and is obtained by subtracting the Jaccard 
coefficient from 1. 
 

 
 
3.2 Eclat Algorithm: 
The Eclat algorithm is used to perform itemset mining. Eclat 
[ 3] algorithm is basically a depth-first search algorithm 
using set intersection. It uses a vertical database layout i.e. 
instead of explicitly listing all transactions; each item is 
stored together with its cover (called tidlist) and uses the 
intersection based approach to compute the support of an 
itemset. In this way, the support of an itemset X can be 
easily computed by simply intersecting the covers of any 
two subsets Y, Z U X, such that Y U Z = X. The Eclat 
algorithm is as given below: 
 
Input: D, K, i ⊆ I 
Output: F[I](D, K) 

1. F[I] :={} 
2. for all I L I occurring in D do 
3. F[I] := F[I] ∪ {I ∪ {i}} 
4. // Create Di 
5. Di: = {} 
6. for all j L I occurring in D such that j>I do 
7. C := cover({i}) O cover({j}) 
8. if |C| >= K then 
9. Di: = Di ∪ {(j, C)} 
10. end if 
11. end for 
12. //Depth-first recursion 
13. Compute F[I ∪ {i}](Di, K) 
14. F[I] := F[I] ∪ F[I ∪ {i}] 

15. end for 
 
In this algorithm each frequent item is added in the output 
set. After that, for every such frequent item i, the I projected 
database Di is created. This is done by first finding every 
item j that frequently occurs together with i. The support of 
this set {i, j} is computed by intersecting the covers of both  
items. If   {i, j} is frequent,  then  j is inserted into Di together 
with its cover. The reordering is performed at every 
recursion step of the algorithm between line 10 and line 11. 
Then the algorithm is called recursively to find all frequent 
itemsets in the new database Di[3]. 
 

3.3 Association Rules: 
An association is a rule of the format: LHS _ RHS, where 
LHS and RHS stand for Left Hand Side and Right Hand 
Side respectively. These are two sets of items and do not 
share common items. The rule can be read as “IF LHS 
THEN RHS”. A set of items is called an itemset [4]. The 
goal of association rule discovery is to find associations 
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among items from a set of transactions, each of which 
contains a set of items. Not all of the association rules 
discovered within a transaction set are useful. Generally the 
algorithm finds a subset of association rules that satisfy 
certain constraints. The most commonly used constraint is 
minimum support. The support of a rule is defined as the 
support of the itemset consisting of both the LHS and the 
RHS. The support of an itemset is the percentage of 
transactions in the transaction set that contain the itemset. 
An itemset with a support higher than a given minimum 
support is called frequent itemset. Similarly, a rule is 
frequent if its support is higher than the minimum support. 
Minimum confidence is another commonly used constraint 
for association rules. The confidence of a rule is defined as 
the ratio of the support of the rule and the support of the 
LHS. It is equivalent to the probability that a transaction 
contains the RHS if the transaction contains the LHS. A rule 
is confident if its confidence is higher than a given minimum 
confidence. Most association rule algorithms generate 
association rules in two steps: 
 

1. Generate all frequent itemsets; and 
2. Construct all rules using these itemsets. 

 
The foundation of this type of algorithm is the fact that any 
subset of a frequent itemset must also be frequent, and that 
both the LHS and the RHS of a frequent rule must also be 
frequent. Therefore, every frequent itemset of size n can 
result in n association rules with a single item RHS. Then 
we compared the results of the proposed algorithm and the 
previous algorithms i.e., without context window 
checking[4]. 
 

4. PROPOSED ALGORITHM 

In this study, a new dynamic sliding window algorithm for 
frequent itemset mining over data streams is proposed. In 
this algorithm, the  user specifies initial window size, 
context window size and context variation . The algorithm 
adaptively adjusts the window length based on the concept 
changes that it detects during the stream data 
processing.The proposed algorithm is, Algorithm CDSW( 
mWSize, MWSize, CWSize, CV, ms) 

1. W=WindowInit (mWSize, MWSize); //window is 
initialized with  

2. C=ConceptChangeWindowInit( CWSize);  
//concept variation window is initialized 

3. WT=Insert( T,  mWSize); 
4. CT=Insert(T, CWSize); 
5. Forever 
6. JSim = Dj (A,B); //jaccard distance between the 

itemsets is calculated 
7. If JSim < CV then //concept variation checking 
8. While WSize = (MWSize + CWSize) 
9. WT = WT + CT; //window is dynamically adjusted 
10. CT=Insert(T); //New transactions are inserted in 

concept change window 
11. JSim(CT,WT); //New transactions are checked 

for similarity 
12. End While; 
13. FinalizeWindow(WSize,WT); //Window size and 

transactions are finalized 
14. Else  
15. FinalizeWindow(WSize,WT); 

16. End if 
17. FPSet = Eclat(WT,ms); //frequent items are 

calculated using éclat algorithm. 
18. End for 

 
In This Algorithm, mWSize, MWSize, CWSize, CV, ms are 
the parameters used to refer minimum window size, 
maximum window size, concept variation window size, 
concept variation and minimum support.  In line 1 & 2, The 
window and the concept change window is initialized. In line 
3, the transactions are inserted in to the widow up to 
minimum window size. After that, the next coming 
transactions are inserted in to the concept change window. 
Then Until all transactions are completed, the normal 
window transactions and the concept change window 
transactions are checked for similarity in line 6. In line 7, the 
jaccard distance and the given concept variation are 
checked. If the Jaccard similarity distance is less than the 
given concept variation threshold, that is, the incoming 
transactions are similar. So, the concept change window 
transactions are inserted in to the normal window in line 9. 
In line 10 & 11, the new incoming transactions are again 
inserted in to the concept change window and checked for 
similarity. This process goes until the normal window size is 
filled with the maximum window size and concept change 
window size. In line 13, If the window size is full, then the 
transaction of that window are finalized and the concept 
change window transactions are inserted in to the next 
window. Else if the similarity is greater than the concept 
variation given, that means the incoming transactions are 
not similar to the previous transactions. So In line 15, the 
window with minimum transactions are finalized. In line 17, 
the frequent itemsets are calculated for finalized window 
transactions using Eclat algorithm.  
 

5. EXPERIMENTAL RESULTS: 
We had performed experiments on the dataset generated 
by the synthetic dataset generator  and the corresponding 
name convention  to produce T40.I10.D100K dataset. 
Based on this name convention, the three numbers denote 
the average transaction size (T = 40), the average 
maximum potentially frequent itemset size (I = 10) and the 
total number of transactions (D = 100 K), respectively. Here 
we had taken 10000 transactions and performed the 
algorithm testing. We initially gave minimum window size as 
10, maximum window size as 20, concept change window 
size is 60% of the normal window size i.e., 6 records will be 
stored in the concept change window and the concept 
variation threshold is given as 0.6. Then we had given 20% 
as support and 60% as confidence. Then with out selecting 
context variation checking, we got only 30 frequent item 
sets, as the window deletes the previous transactions and 
only stores the last coming transactions. When we selected 
concept variation checking, we got 2918 frequent itemsets. 
We had checked for several minimum supports and 
confidence, but when we took 20% as minimum support, 
then we got perfect differences.  Thus the algorithm 
generated more and adequate frequent itemsets when the 
window is dynamically adjusted and concept change 
variation window is taken. 
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6. CONCLUSION 

The results shown that the proposed concept change 
dynamic aware sliding window model gives more accurate 
frequent itemsets than the other algorithms. In this the 
amount of change in the incoming records is continuously 
monitored and window is dynamically updated. 
Experimental evaluations show that our algorithm 
effectively tracks the concept change during a data stream 
mining. Moreover, the length of window is reduced when 
the amount of change is greater than minimum change 
threshold given by the user. Though it is necessary to 
determine an initial window size for the algorithm, however 
it is adjusted during the data stream mining. Therefore, an 
improper value for this parameter without a prior knowledge 
does not affect the overall performance of the algorithm. 
Our algorithm requires from the user to input a minimum 
change threshold instead of a window size. It shows the 
amount of change that a user is interested to observe in the 
set of frequent patterns. In future, we are going to check 
this algorithm for different frequent itemset mining 
algorithms and check their performance comparisions. 
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