
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 54
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Concept Change Aware Dynamic Sliding Window
Based Frequent Itemsets Mining Over Data
Streams

K. Neeraja, V. Sireesha

M.Tech, Dept of Computer Science, Vasavi College of Engineering, Hyderabad, India.
Assistant Professor, Dept of Computer Science, Vasavi College of Engineering, Hyderabad, India.
Email: k.neeraja09@gmail.com, sireesha.vikkurty@gmail.com

ABSTRACT:Considering the continuity of a data stream, the accessed windows information of a data stream may not be useful as a concept change is
effected on further data. In order to support frequent item mining over data stream, the interesting recent concept change of a data stream needs to be
identified flexibly. Based on this, an algorithm can be able to identify the range of the further window. A method for finding frequent itemsets over a data
stream based on a sliding window has been proposed here, which finds the interesting further range of frequent itemsets by the concept changes
observed in recent windows.

Keywords: Data Mining, Data streaming, Frequent Itemsets, Concept Change.

1. INTRODUCTION

Data mining concepts and methods can be applied in
various fields like marketing, medicine, real estate,
customer relationship management, engineering, web
mining etc. Frequent itemset mining has become one of
the important subjects of data mining. Recently, there has
been much interest in data arriving in the form of
continuous and infinite data streams, which arise in several
application domains like high-speed networking, financial
services, e-commerce and sensor networks. Data-stream
mining is a technique which can find valuable information
or knowledge from primitive data. Unlike mining static
databases, mining data streams poses many new
challenges. First, each data element should be examined at
most once. It is unrealistic to keep the entire stream in the
main memory. Second, the memory usage for mining data
streams should be bounded even though new data
elements are continuously generated. Third, each data
element in data streams should be processed as fast as
possible. Finally, the results generated by the online
algorithms should be instantly available when user
requested.In this paper we consider mining recent frequent
item sets in sliding windows over data streams and
estimate their true frequencies, while making use of dynamic
sliding windows according to the concept change occurred in the
incoming data. Concept refers to the target variables, which
the model is trying to predict or to describe. Concept
change is the change of the underlying concept over time.
The concept change is a known phenomenon in data
stream processing due to dynamic nature of incoming data
[1]. The concept change makes frequent itemset mining in
data streams even more challenging than traditional static
databases. In this study, the aim is to measure the amount
of changes in the set of frequent patterns and to exploit it by
dynamically adjusting the window size. The sliding window
model is an interesting model to mine frequent patterns
over data streams. This model tries to handle the concept
change by considering only recent arrived data. The
window is usually stored and maintained within the main
memory for fast processing[1]. In order to overcome the
problem of determing the window size, with motivation
gained from the research article “Towards a variable size

sliding window model for frequent itemset mining over data
streams”, here we propose a frequent itemset mining model
for Data streams, which can be referred as “concept
change aware dynamic sliding window based frequent
itemset mining over data steams”. The main objective the
proposal is to investigate the problem of flexible size sliding
window for frequent itemset mining over data streams in
regard to justify the proposed model. In this proposed
model, the process of continuous monitoring to observe the
amount of change in the set of frequent patterns will be
adopted. The window size should adaptively adjust, which
is based on the observed amount of concept change within
the incoming data stream and should expand or reduce
according to the state of change. The rest of the paper is as
follows. The next section presents a review on related
works. Problem statement is described in Section 3
Sections 4 describe the most relevant features of the
algorithm implementation, while the experimental results
are reported and discussed in Section 5. Finally Section 6
concludes the paper.

2. LITERATURE SURVEY
Finding frequent item sets in a set of transactions is a
popular method for so-called market basket analysis, which
aims at finding regularities in the shopping behavior of
customers of supermarkets, mail-order companies, on-line
shops etc. In particular, it is tried to identify sets of products
that are frequently bought together. The first algorithm for
frequent patterns mining over data streams was proposed
by Manku and Motwani (2002) where the authors started
with frequent items mining and then extended their idea to
frequent itemset mining. Every single item coming from the
data streams is considered as a transaction in frequent item
mining. Sliding window is one of the useful and widely used
model for datastream processing and mining. Chang et al.
utilized an information decay model to differentiate the
information of recent transactions from the information of
old transactions. Based on the work by Karp et al on
computing frequent items, Jin et al. proposed another one-
pass algorithm, STREAM, to compute approximate frequent
itemsets over entire data streams. Chang et al proposed a
sliding window method of finding recent frequent itemsets

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 55
ISSN 2347-4289

Copyright © 2014 IJTEEE.

over a data stream based on the estimation mechanism of
the Lossy Count-ing algorithm. Lin et al. introduced an
efficient algorithm for mining frequent itemsets over data
streams under the time-sensitive sliding-window model. The
SWIM (Mozafari et al., 2008) is another pane based
algorithm in which frequent itemsets in one pane of the
window are considered for further analysis to find frequent
itemsets in whole of the window. It keeps the union of
frequent patterns of all panes and incrementally updates
their supports and prunes infrequent ones. There are a
number of studies related to diagnosing change in data
streams (Aggarwal, 2003; Kifer, Ben-David, & Gehrke,
2004; Tao & Ozsu, 2009). These methods are mainly based
on approximating underlying probability distribution that the
incoming data stream is generated based on. Koh and Lin
(2009) proposed a method to estimate and detect concept
shift of frequent patterns over data streams. Ng and Dash
(2008) proposed a test strategy to alarm the user about
detecting change in data streams. In contrast to (Koh & Lin,
2009) and (Ng & Dash, 2008), an approach which
dynamically updates the set of frequent itemsets over data
streams and measures the precise value of concept change
is more desirable and applicable to real data streams. Such
an approach is exploited by (Mahmood Deypir & Sattar
HAshemi, 2012) in a flexible size sliding window frequent
itemset mining to adjust the window size dynamically
according to concept changes within a data stream.

3. PROBLEM STATEMENT

The dynamic sliding window model is an interesting model
to mine frequent patterns over data streams. This model
tries to handle the concept change by considering only
recent arrived data. For fast processing, the window is
usually stored and maintained within the main memory. The
context variation window is initialized with some percentage
of the normal window and then the items coming from data
streams are first initialized to normal window based on
minimum window size. After that the incoming records are
checked with the records present in the normal window and
stored in the context window based on the similarity metric.
Here we used Jaccard Similarity coefficient to check the
similarity between the item sets. If the items are similar that
is having less jaccard distance then those are placed in the
normal window and the window is finalized. If the items are
having more jaccard distance then it means the concept
change occurred so with out inserting the new records it
finalizes the normal window and it creates a new window
and stores the records in the context window in next
window and again the incoming records are calculated and
inserted and so on. Like this the incoming items are stored
according to the similarity at initial stages only. Then the
frequent item sets are calculated for the finalized windows.
Here we used Eclat algorithm for finding frequent itemsets
and association rules are formed for the frequent itemsets
to perform recommendations.

3.1 Jaccard Similarity:
The Jaccard index, also known as the Jaccard similarity
coefficient, is a statistic used for comparing the similarity
and diversity of sample sets. The Jaccard coefficient
measures similarity between finite sample sets, and is
defined as the size of the intersection divided by the size of
the union of the sample sets:

(If A and B are both empty, we define J(A,B)=1.) Clearly,

The Jaccard distance, which measures dissimilarity
between sample sets, is complementary to the Jaccard
coefficient and is obtained by subtracting the Jaccard
coefficient from 1.

3.2 Eclat Algorithm:
The Eclat algorithm is used to perform itemset mining. Eclat
[3] algorithm is basically a depth-first search algorithm
using set intersection. It uses a vertical database layout i.e.
instead of explicitly listing all transactions; each item is
stored together with its cover (called tidlist) and uses the
intersection based approach to compute the support of an
itemset. In this way, the support of an itemset X can be
easily computed by simply intersecting the covers of any
two subsets Y, Z U X, such that Y U Z = X. The Eclat
algorithm is as given below:

Input: D, K, i ⊆ I
Output: F[I](D, K)

1. F[I] :={}
2. for all I L I occurring in D do
3. F[I] := F[I] ∪ {I ∪ {i}}
4. // Create Di
5. Di: = {}
6. for all j L I occurring in D such that j>I do
7. C := cover({i}) O cover({j})
8. if |C| >= K then
9. Di: = Di ∪ {(j, C)}
10. end if
11. end for
12. //Depth-first recursion
13. Compute F[I ∪ {i}](Di, K)
14. F[I] := F[I] ∪ F[I ∪ {i}]

15. end for

In this algorithm each frequent item is added in the output
set. After that, for every such frequent item i, the I projected
database Di is created. This is done by first finding every
item j that frequently occurs together with i. The support of
this set {i, j} is computed by intersecting the covers of both
items. If {i, j} is frequent, then j is inserted into Di together
with its cover. The reordering is performed at every
recursion step of the algorithm between line 10 and line 11.
Then the algorithm is called recursively to find all frequent
itemsets in the new database Di[3].

3.3 Association Rules:
An association is a rule of the format: LHS _ RHS, where
LHS and RHS stand for Left Hand Side and Right Hand
Side respectively. These are two sets of items and do not
share common items. The rule can be read as “IF LHS
THEN RHS”. A set of items is called an itemset [4]. The
goal of association rule discovery is to find associations

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 56
ISSN 2347-4289

Copyright © 2014 IJTEEE.

among items from a set of transactions, each of which
contains a set of items. Not all of the association rules
discovered within a transaction set are useful. Generally the
algorithm finds a subset of association rules that satisfy
certain constraints. The most commonly used constraint is
minimum support. The support of a rule is defined as the
support of the itemset consisting of both the LHS and the
RHS. The support of an itemset is the percentage of
transactions in the transaction set that contain the itemset.
An itemset with a support higher than a given minimum
support is called frequent itemset. Similarly, a rule is
frequent if its support is higher than the minimum support.
Minimum confidence is another commonly used constraint
for association rules. The confidence of a rule is defined as
the ratio of the support of the rule and the support of the
LHS. It is equivalent to the probability that a transaction
contains the RHS if the transaction contains the LHS. A rule
is confident if its confidence is higher than a given minimum
confidence. Most association rule algorithms generate
association rules in two steps:

1. Generate all frequent itemsets; and
2. Construct all rules using these itemsets.

The foundation of this type of algorithm is the fact that any
subset of a frequent itemset must also be frequent, and that
both the LHS and the RHS of a frequent rule must also be
frequent. Therefore, every frequent itemset of size n can
result in n association rules with a single item RHS. Then
we compared the results of the proposed algorithm and the
previous algorithms i.e., without context window
checking[4].

4. PROPOSED ALGORITHM

In this study, a new dynamic sliding window algorithm for
frequent itemset mining over data streams is proposed. In
this algorithm, the user specifies initial window size,
context window size and context variation . The algorithm
adaptively adjusts the window length based on the concept
changes that it detects during the stream data
processing.The proposed algorithm is, Algorithm CDSW(
mWSize, MWSize, CWSize, CV, ms)

1. W=WindowInit (mWSize, MWSize); //window is
initialized with

2. C=ConceptChangeWindowInit(CWSize);
//concept variation window is initialized

3. WT=Insert(T, mWSize);
4. CT=Insert(T, CWSize);
5. Forever
6. JSim = Dj (A,B); //jaccard distance between the

itemsets is calculated
7. If JSim < CV then //concept variation checking
8. While WSize = (MWSize + CWSize)
9. WT = WT + CT; //window is dynamically adjusted
10. CT=Insert(T); //New transactions are inserted in

concept change window
11. JSim(CT,WT); //New transactions are checked

for similarity
12. End While;
13. FinalizeWindow(WSize,WT); //Window size and

transactions are finalized
14. Else
15. FinalizeWindow(WSize,WT);

16. End if
17. FPSet = Eclat(WT,ms); //frequent items are

calculated using éclat algorithm.
18. End for

In This Algorithm, mWSize, MWSize, CWSize, CV, ms are
the parameters used to refer minimum window size,
maximum window size, concept variation window size,
concept variation and minimum support. In line 1 & 2, The
window and the concept change window is initialized. In line
3, the transactions are inserted in to the widow up to
minimum window size. After that, the next coming
transactions are inserted in to the concept change window.
Then Until all transactions are completed, the normal
window transactions and the concept change window
transactions are checked for similarity in line 6. In line 7, the
jaccard distance and the given concept variation are
checked. If the Jaccard similarity distance is less than the
given concept variation threshold, that is, the incoming
transactions are similar. So, the concept change window
transactions are inserted in to the normal window in line 9.
In line 10 & 11, the new incoming transactions are again
inserted in to the concept change window and checked for
similarity. This process goes until the normal window size is
filled with the maximum window size and concept change
window size. In line 13, If the window size is full, then the
transaction of that window are finalized and the concept
change window transactions are inserted in to the next
window. Else if the similarity is greater than the concept
variation given, that means the incoming transactions are
not similar to the previous transactions. So In line 15, the
window with minimum transactions are finalized. In line 17,
the frequent itemsets are calculated for finalized window
transactions using Eclat algorithm.

5. EXPERIMENTAL RESULTS:
We had performed experiments on the dataset generated
by the synthetic dataset generator and the corresponding
name convention to produce T40.I10.D100K dataset.
Based on this name convention, the three numbers denote
the average transaction size (T = 40), the average
maximum potentially frequent itemset size (I = 10) and the
total number of transactions (D = 100 K), respectively. Here
we had taken 10000 transactions and performed the
algorithm testing. We initially gave minimum window size as
10, maximum window size as 20, concept change window
size is 60% of the normal window size i.e., 6 records will be
stored in the concept change window and the concept
variation threshold is given as 0.6. Then we had given 20%
as support and 60% as confidence. Then with out selecting
context variation checking, we got only 30 frequent item
sets, as the window deletes the previous transactions and
only stores the last coming transactions. When we selected
concept variation checking, we got 2918 frequent itemsets.
We had checked for several minimum supports and
confidence, but when we took 20% as minimum support,
then we got perfect differences. Thus the algorithm
generated more and adequate frequent itemsets when the
window is dynamically adjusted and concept change
variation window is taken.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 57
ISSN 2347-4289

Copyright © 2014 IJTEEE.

6. CONCLUSION

The results shown that the proposed concept change
dynamic aware sliding window model gives more accurate
frequent itemsets than the other algorithms. In this the
amount of change in the incoming records is continuously
monitored and window is dynamically updated.
Experimental evaluations show that our algorithm
effectively tracks the concept change during a data stream
mining. Moreover, the length of window is reduced when
the amount of change is greater than minimum change
threshold given by the user. Though it is necessary to
determine an initial window size for the algorithm, however
it is adjusted during the data stream mining. Therefore, an
improper value for this parameter without a prior knowledge
does not affect the overall performance of the algorithm.
Our algorithm requires from the user to input a minimum
change threshold instead of a window size. It shows the
amount of change that a user is interested to observe in the
set of frequent patterns. In future, we are going to check
this algorithm for different frequent itemset mining
algorithms and check their performance comparisions.

REFERENCES:
[1]. Mahmood Deypir a, Mohammad Hadi Sadreddini,

Sattar Hashemi, Towards a variable size sliding
window model for frequent itemset mining over
data streams.

[2]. Chandni Shah1 , Factors Influencing Frequent

Pattern Mining on Stream Data.

[3]. Pramod S, O.P. Vyas, Survey on Frequent Item set
Mining Algorithms.

[4]. Zijian Zheng, Ron Kohavi, Real World Performance

of Association Rule Algorithms.

[5]. Zhen-Hui Song, Yi Li, Associative classification
over Data Streams.

[6]. Mohamed Medhat Gaber, Arkady Zaslavsky and

Shonali Krishnaswamy, Mining Data Streams: A
Review.

[7]. Nan Jiang and Le Gruenwald, Research Issues in

Data Stream Association Rule Mining.

[8]. Christian Borgelt, Efficient Implementations of
Apriori and Eclat.

[9]. Lars Schmidt-Thieme, Computer-based New

Media Group (CGNM), Algorithmic Features of
Eclat.

[10]. Manku, G. S., & Motwani, R. (2002). Approximate

frequency counts over data streams. In Proc.
VLDB int. conf. very large databases (pp. 346–
357).

[11]. Chang, J. H., & Lee, W. S. (2005). estWin: Online

data stream mining of recent frequent itemsets by
sliding window method. Journal of Information
Science, 31(2), 76–90.

[12]. Mozafari, B., Thakkar, H., & Zaniolo, C. (2008).

Verifying and mining frequent patterns from large
windows over data streams. In Proc. int. conf.
ICDE (pp. 179– 188).

[13]. Aggarwal, C. (2003). A framework for diagnosing

changes in evolving data streams.

[14]. Koh, J.- L., & Lin, C.- Y. (2009). Concept shift
detection for frequent itemsets from sliding window
over data streams.

[15]. http://people.revoledu.com/kardi/tutorial/Similarity/J

accard.html

[16]. Data stream mining - Wikipedia, the free
encyclopedia

[17]. Jiawei Han

(http://www.sal.cs.uiuc.edu/~hanj/DM_Book.html)

[18]. Vipin Kumar
(http://www.users.cs.umn.edu/~kumar/csci5980/ind
ex.html)

http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
Full%20House%202%20(2012)%20Complete%20Series
Full%20House%202%20(2012)%20Complete%20Series
http://www.sal.cs.uiuc.edu/~hanj/DM_Book.html
(http:/www.users.cs.umn.edu/~kumar/csci5980/index.html)
(http:/www.users.cs.umn.edu/~kumar/csci5980/index.html)

