
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 28
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Applying R Trees In Non Spatial Multidimensional
Databases

Jinka Sravana

, Suba. S

M.Tech, Dept of Computer Science, Vasavi College of Engineering, Hyderabad, India.
Assistant Professor, Dept of Computer Science, Vasavi College of Engineering, Hyderabad, India.
Email: jinkasravana@gmail.com, subasuseela@gmail.com

ABSTRACT: In this paper we propose that R trees which is a spatial access method has the ability for indexing on multiple dimensions. The traditional
Database Management Systems (DBMSs) like Oracle, Mysql do not perform well when multidimensional Non Spatial data is given since these DBMSs
follows one dimensional indexing at different levels and it effects the retrieval time of queries poorly has sequential scan of the database is done. R Tree
families are the most efficient among the indexing structures in data accessing methods in case of spatial data The multicolumn index structure available
in the present-day DBMSs follows a single dimension indexing at multiple levels. Spatial access methods like R-Trees are capable of indexing on
multiple dimensions R trees have a better performance in case of spatial data. Retrieval time of queries can be improved considerably compared
traditional DBMSs methods.

Keywords: R trees, Non spatial data, multidimensional databases, retrieval, Database Management Systems

1. INTRODUCTION
Day-by-day the data in the databases increases rapidly,
due to this reason organizing the spatial queries for a
spatial access method in Database Management Systems
(DBMSs) had became an important task. B trees cannot
handle these queries efficiently when two or more of these
attributes are to be integrated to form an index structure of
a relation. Since B trees follows single dimensional indexing
at multiple levels. R trees which is a spatial access methods
has the capability of indexing on multiple levels. R tree
families are the most efficient among the indexing
structures in data accessing methods in case of spatial
data. Making use of R trees in non spatial data will help in
multidimensional indexing of the data. B-Trees cannot store
new types of data. Specifically people wanted to store
geometrical data and multi-dimensional data. The R-Tree
provided a way that is they store such type of data

2. LITERATURE
In this section we discuss about spatial data, non spatial
data, R tree, its structure and advantages of R tree
compared to B trees.

2.1 SPATIAL DATA
The data that indicates the Earth location (latitude and
longitude, or height and depth) of these rendered objects is
the spatial data common example of spatial data can be
seen in a road map. A road map is a two-dimensional
object that contains points, lines, and polygons that can
represent cities, roads, and political boundaries such as
states or provinces. Using these attributes can make it
easier to answer queries like "find all tanks whose speed is
10 km and oriented to north” or "find all enemy tanks in a
certain region”

2.2 NON SPATIAL DATA
Nonsapitaldata(also called attribute or characteristic
data) is that information which is independent of all
geometric considerations. For example, a person’s height,
mass, and age are non-spatial data because they are
independent of the persons location. There are different
types of spatial indexing methods , they are:

 Grid

 Z-order

 Quad tree

 Oct tree

 UB- tree

 R-tree

2.3 R TREE
R tree which is a spatial access method and is a height
balanced tree like B tree. In R trees spatial data objects are
represented by minimum bounding rectangles(MBR) see
figure a. R trees was implemented for accessing the
multidimensional data ,it can also be used for single
dimensional databases. R tree mainly depends on the
splitting of the node. In R trees there are two different types
of splitting can be done. We can use either quadratic split or
linear split.

Figure a Representation of MBR

2.3 PROPERTIES OF R TREES

 The number of nodes in the tree is between m and
M where M is the maximum number of nodes.

 The M value may differ for leaf and non leaf nodes

 All leaf nodes are at the same level.

 R-Tree is a height-balanced tree similar to a B-
Tree.

 Leaf nodes contain pointers to data objects.

 Spatial object

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 29
ISSN 2347-4289

Copyright © 2014 IJTEEE.

 Structure is designed in such a way that a spatial
search requires visiting only a small number of
nodes.

 R-Trees can organize any-dimensional data by
representing the data by a minimum bounding box.

 A node can have many objects in it.

 The leaves point to the actual objects.

2.4 ADVANTAGES OF R TREES

 The retrieval time of given queries can be faster
compared to B trees.

 The reason behind this is R trees are a multiple
dimension where as B trees are one dimension.

3. ALGORITHM

3.1 INSERTION
The R tree insertion algorithm is explained as follows:

1. Algorithm Insert(type Entry Ei, type Node
RNi)Insert a new Entry Ei in an R-tree with root
RNi.

2. Traverse the tree from root RNi to the leaf to
correct leaf.

3. In case ties select the node who’s MBR (minimum
bounding rectangle) has the minimum area.

4. If the selected leaf Li can accommodate Ei
5. Insert Ei into Li
6. Update all MBRs in the path from the root to Li, so

that all of them cover Ei.mbr
7. Else if Li is already full
8. Let Si be set consisting of all Li entries and the new

entry Ei select as seeds belonging to e1i, e2i.
9. Let Si be the set consisting of all Li entries and the

new entry Ei
10. Select as seeds two entries e1i,e2i belongs to si

where the distance between e1i and e2i is the
maximum among all the pairs of entries from Si

11. From the two nodes L1i, L2iwhere the first contains
e1i, and the second contains e2i.

12. Examine the remaining members of Ei one by one
and assign them to L1i or L2i, depending on which
of the MBRs (minimum bounding rectangle) of
these nodes will require the minimum area
enlargement so that it can cover this entry.

13. If a tie occurs
14. Assign the entry to the node whose MBR has the

smaller area.
15. End if.
16. If a tie occurs again
17. Assign the entry to the node that contains the

smaller number of entries.
18. End if.
19. Update the MBRs of nodes that are in the path

from root to Li, so as to cover L1i and
accommodate L2.

20. Perform splits at the upper levels if necessary.
21. Suppose if the root has to be split in such situation,

create a new root.
22. Increase the height of the tree by one
23. End if.

3.2 SEARCH :
The search algorithm in R Tree is some s what similar to t
the B Tree search method. In this it follows the certain
method that is if an R Tree is given let the root node be k,
then let us find all records whose rectangles overlap a given
search rectangle P. Let us denote an entry in the node as
M(MI,MP), where MI denotes the smallest rectangle
bounding the sub-tree where as MP is the pointer to the sub
tree. SearchLeaf(t, s)

1. for each entry E in t
2. do if EI overlaps s
3. then output E

Searching an R-Tree is unlike searching an B-Tree, All
internal nodes whose minimal bounding rectangles intersect
with the search rectangle may need to be visited during a
search. So a worst case performance is O(N) instead of
O(logN). Intuitively, we want the minimal bounding
rectangles stored in a node to overlap as little as possible
so that we need to search as little nodes as possible. We
can apply the searching of an R-tree to find objects that
overlap a search object, say o, by the following steps.
Search Obj(t, o)

1. Bounding box of the search object o
2. Search Sub Tree(t,s) and revise the above Search

Leaf(t,s) as follows:

Search Leaf (t,s)

1. for each entry E in t
2. do if EI = s
3. then if EP = o
4. then output E

In this way the search an node takes place.

4. IMPLEMENTATION OF R TREE
In this section let us discuss how the R tree is implemented.
At first I had taken the dataset which consisting of 53,145
records columns represents the trajectory id x,y .By using
the insertion algorithm I had inserted the given into it. First
we have to form the rectangle coordinates that is, in the
given x and y values we have to take first 4 values in that
we have take the x minimum and y minimum values.
Similarly we have to consider the x maximum and y
maximum values. In this way the rectangle coordinates will
be formed.. In this the insertion of a given dataset is done.
Later I had searched for given rectangle coordinates.
Similarly the same dataset has been inserted into oracle
and Mysql. Later searching has been done in Mysql
,Oracle .In MySql and Oracle queries has been written
related to the dataset.

5. RESULTS
By inserting the given dataset in R tree I had got the
results and the result is represented in figure b .Later I
took a small dataset consisting of 34 records which
contains count reference ,outlet, time and inserted in mysql

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 7 30
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Figure b showing insertion of R tree

Figure c showing R tree insertion with time

Figure d showing insertion in mysql

6. CONCLUSION
In this paper we described how R tree is better compared to
B trees finally I can conclude that by using R Tree we can
reduce the retrieval of queries compared to MySql The R-
tree structure has been shown to be useful for indexing
spatial data . Since R Trees is a multidimensional database.
By using this performance can be reduced.

REFERENCES
[1]. A. Guttman, ―R-Trees: A Dynamic Index Structure

for Spatial Searching,Proc. ACM SIGMOD ’84, pp.
47-57, 1984.

[2]. D. Greene, ―An Implementation and Performance

Analysis of Spatial Data AccessMethods,Proc. Fifth
IEEE Int’l Conf. Data Eng. (ICDE ’89), pp. 606-615,
1989.

[3]. K. Chakrabarti and S. Mehrotra, ―Efficient

Concurrency Control in Multi-Dimensional Access
Methods,Proc. ACM SIGMOD ’99, pp. 25-36, 1999.

[4]. J.K. Chen, Y.F. Huang, and Y.H. Chin, ―A Study

of Concurrent Operations on R-Trees, Information
Sciences, vol. 98, nos. 1-4, pp. 263- 300, May
1997.

