
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 2 10
ISSN 2347-4289

Copyright © 2014 IJTEEE.

A HYBRID APPROACH FOR TEST CASE
GENERATION

Vijayakumar.R, N.Basker

PG scholar, Department of computer science and engineering, Sona college of technology, Salem, TN, India
Assistant Professor, Department of Computer Science and Engineering, Sona College of Technology, Salem, TN, India
Vijaykumarcse12@gmail.com, bas2k9@gmail.com

Abstract: Today, Software testing is an essential part of successful software development process. The input executes the program and produces the
expected output. The outcome of the software product depends on software testing. Manual testing is difficult to produce expected output. The manual
testing takes long time to test. The major problem in manual testing is code coverage is not done at regular interval. Many techniques are used to
automatically produce inputs in recent years. The test suite generation method is used to produce test suites with high code coverage. We produce a
hybrid approach which provides the methodology to improve coverage level of branches in code at regular intervals. The main objective of the proposed
system is to increase the coverage level with minimum test suite in a short time. The hybrid approach combines two techniques for improving the
accuracy of branch coverage. The test cases are generated by using EVOSUITE tool. Optimization technique is based on coverage level of branch
statements.

Keywords: Test case generation, branch coverage, search based technique.

I. INTRODUCTION
Software testing is the process of evaluation a software
item to detect differences between given input and
expected output. It also used to assess the feature of a
software item. Generally software testing is an essential
process for checking the quality of a software product. The
test cases for a procedure consists of a sequence of input
[6] values.There are several techniques which automatically
generate inputs have been developed over the years. One
of the methods is code coverage technique. Today we can
able to produce test suites with high code coverage. The
main problem in this process is the generated input may
cause complex data structures. Our work concentrated to
deliver an efficient test input generation [1] that will cover
high code coverage that process at minimum time
consumption. There has been an active research
community investigating the generation of test inputs oracle
with the use of model checking, the focus is on specification
based test input generation where coverage of the
specification is the goal. The problem of the expected
outcome continues and has become known as the oracle
problem. Sometimes, essential properties of programs are
formally specified or have to hold universally such that no
definite oracles need to be defined. Search based testing is
used for test data generation. It is combined with symbolic
execution [8] and given as input to test data. The proposed
technique we combine search based software testing [2]
(SBST) with dynamic symbolic execution and implementing
using evosuite. The genetic algorithm[4] and it functions are
used for optimizing the test suite. The mutations and
crossover are used as GA function. The evosuite tool is
used for test case generation. The evosuite works on byte
code [6] level and collect the information fitness values.

II. LITERATURE STUDY

A. Pair-22Wise Test Coverage:
Combinatorial Interaction Testing (CIT) is a technique used
to discover faults caused by parameter interactions in highly
configurable systems. These systems tend to be large and
exhaustive testing is generally impractical. Indeed, when

the resources are limited, prioritization of test cases is a
must. Important test cases are assigned a high priority and
should be executed earlier. On the one hand, the
prioritization of test cases may reveal faults in early stages
of the testing phase. But, on the other hand the generation
of minimal test suites that fulfill the demanded coverage
criteria is an NP-hard problem. Therefore, search based
approaches are required to find the near optimal test suites.
In this work we present a novel evolutionary algorithm to
deal with this problem.

B.Search based software test data generation for
string data:
The test data is to cover program branches which depend
on string predicates [2] such as string equality, string
ordering and regular expression matching. Here the string
cost functions are assessed by comparing their
performance on a number of sample test programs.

1) String search space: The space of strings formed
from the 16-bit character. The search space
depends on the maximum and minimum length of
the input string that is generated.

2) Character distance: the new cost function based on
the pair wise comparison of character values. It
define sum of the absolute differences between the
ordinal character values of corresponding
character pairs.

C. Empirical analysis of the role of the test sequence
length:
The internal state of the code is considered for software
testing. The internal states [3] are presents in both object
oriented and procedural software code. It analyzes a test
length for particular code coverage. Which consists of four

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 2 11
ISSN 2347-4289

Copyright © 2014 IJTEEE.

parts of search based techniques: Random search, Hill
climbing, Evolutionary algorithm, Genetic algorithm. In
random search algorithm the fitness function is used for
getting optimal solution.

D. Symbolic search based technique:
This method avoids some problem associated with
symbolic execution [11] in loops. Meta heuristic algorithms
rely on fitness function to find optimal solution. Whenever
an input misses the target branches, the branch distance is
used to find closely related branches. The branch distance
is computed through,

Where,
x- Distance between two branches.
K- Failure constant.

E. Optimization of test cases:
The optimization technique is used in regression testing.
Genetic algorithm [12] is used for optimization. Test cases
are prioritized on the basis of lines of code modified in
testing. The genetic algorithm functions like crossover and
mutations are used.

III. EXISTING SYSTEM
The following figure shows the process of existing
approach:

Fig.1 Architecture diagram

Traditional testing methods cover maximum branch
statements. But it not covers all branches in a regular
interval and it takes long time. The infeasible branches are
not covered. The whole test case generation method
presents a search based testing method [8] with genetic
algorithm to cover all branches. This method covers all
branches and feasible branch statements in minimum
number of test cases at regular intervals. The genetic
algorithm [12] is used for optimizing and prioritizing the test
cases. The whole test case generation method consists of
four modules such as: Search based testing, User test
generation, Test suite optimization, Evolution of test
analysis.

IV. METHODOLOGY

A. Search based testing:
The search based testing [2] can easily produce test data to
satisfy the first and the third branch condition, but the
second branch is an example of the flag problem, which
gives the search no guidance. These testing make use of
modern self control which is not dependent on search
heuristics [4], but there are limits to both scalability and the
types of constraints that can be handled. A problematic
non-linear constraint, and if the Math library is not depend
on source code or byte code, then the formation can be
difficult in the first place.

B. Test case generation:
The test cases are generated based on test data. The test
case generator executes the test data. The overlap
between execution traces and control/call dependences
leading to the current target determines the fitness of the
individuals. The resulting test class is manually edited, in
order to add declaration inside the body of each test
method. This is the most human intensive phase in the
whole testing process. It happens only at the end of the test
case generation process [5], when the algorithm stops and
returns the test suite. These test cases are executed by the
test case executor. Their performance is directly provided
by the tool which produces information about passed and
failed test cases, as well as about the specific assertion that
are not satisfied. The test suite produced by the Test case
generator and is guaranteed to provide the level of
coverage reached by the genetic algorithm.

D. Test suite optimization:
The genetic algorithm is based on the concepts of a
quantum bits which are in quantum mechanics [7]. This
algorithm generates a new test case they are targeted to be
covered or to reach a maximum execution time. For each
target to be covered we have to select at line, a maximum
number of successive generations are produced out of
initial population. Test cases in the current population are
executed, possibly covering some of the previously
uncovered targets. The targets still to be covered are
updated, and if the currently selected target (t) has been
covered, the most internal loop is exited and a new target is
selected.

4. Evolution of test analysis:
The generated test suites are based on without prioritization
and with prioritization. A new characteristic is said to be
killed by a test suite if the test performance reports a failure.
The percentage of killed characteristics shows the fault
detection ability of the test suite. For a given program and
given test generation, the two test suites generated with
and without prioritization have the same tests and thus the
same fault detection ability.

IV. PROPOSED SYSTEM
The hybrid approach method is used in proposed system.
This hybrid approach combines search based techniques
and dynamic symbolic execution technique for generating
test data. This test data covers all branch statements. The
accuracy of code coverage is increased. Minimum test

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 2 12
ISSN 2347-4289

Copyright © 2014 IJTEEE.

cases are generated with regular time interval. Show the
following proposed system architecture diagram.

Fig.2 Proposed architecture

Genetic algorithm is used for prioritizing and optimizing the
test cases. The test case priority is based on maximum
coverage level of branch statements. Show the pseudo
code for genetic algorithm.

Begin
T 0
Initialize P (t)

While (not termination condition)

Evaluate P (t)
Select P (t+1) from p (t)
Crossover P (t+1)
Mutate P (t+1)

T t+1
End while
End procedure

A. HYBRID APPROACH
The hybrid approach combine search based technique and
dynamic symbolic method technique. This method is used
to generate test input data. The test input data covers all
branch statements including infeasible branch statement.
The SBST technique with genetic algorithm generates test
input data in following way.

Fig.3 Flowchart for test data generation

The dynamic symbolic execution is used to automatically
generate test inputs to achieve high code coverage. The
dynamic symbolic execution execute given input data on
program under test and at same time collect symbolic
constraints obtained from predicates in branch statements.
DSE is performed iteratively on the program under to
increase code coverage. DSE uses a search strategy to flip
a branching node in the path. Flipping a branching node in
a path constructs a new path that shares the prefix to the
node with the old path, but then deviates and takes a
different path. Such a flipped path is feasible is checked by
building a constraint system. If a constraint solver can
determine that the constraint system is satisfiable within the
available resources, DSE generates a new test input that
will execute along the flipped path and achieve additional
code coverage. DSE is able to generate a set of test inputs
that achieve high code coverage.

V. CONCLUSION
Our approach achieves higher coverage than pure search
requiring less repeat, and also same or higher coverage. At
the same time, the use of search techniques [1] allows us to
easily change the search objective. Finally the combination
of search-based test generation with dynamic symbolic
performance and make the best such as testability
transformation or local search will further improve the
achieved coverage when compared to the before approach

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 2 13
ISSN 2347-4289

Copyright © 2014 IJTEEE.

REFERENCES
[1]. Jon Edvardson, “A survey on Automatic Test Data

Generation”.

[2]. Mohammad Alshraideh and Leonardo Bottaci,
“Search based software test data generation for
string data using program specific search
operators,” Softw. Test. Verif. Reliab. pp. 175-203,
2006.

[3]. Andrea Arcuri, “A Theoretical and Empirical

Analysis of the Role of Test Sequence Length in
Software Testing for Structural Coverage, ” IEEE
Trans.Software Eng., vol.38, no., pp. 497-519,
2012.

[4]. Shaukat Ali and Hadi Hemmmati, “A Systematic

Review of the application and Empirical
Investigation of Search-Based Test Case
Generation,” IEEE Trans. Software Eng., vol.36 no.
6, pp. 742-761, 2010.

[5]. Gordon Frasor and Andrea Arcuri, “EvoSuite:

Automatic Test Suite Generation for Object-
Oriented Software”

[6]. Wiiem visser, “Test Inout Generation with Java

PathFinder,” NASA Research center Moffett Field.

[7]. Mehrshad Khosravini, saadatPour Mozafari and
Mohammad Mehdi Ebadzadeh, “Coverage Analysis
of Quantum Genetic Algorithm”.

[8]. Jan Malburg, “Combining Search-based and

Constrained-based Testing,” Saarland university.

[9]. A.Arcuru and L.Briand,”A Practical Guide for Using
Statistical Tests to Assess Randomized Algorithms
in Software Engineering,” Proc. 33rd Int’l Conf.
Software Eng., pp. 1 10. 2011.

[10]. A.Arcuri, M.Z.Iqbal and Briand,”Random Testing:

Theoretical Results and Practtical Implications,”
IEEE trans. Software Eng., vol.38 no.2 pp.258-277,
2011

[11]. Arthur Baars, Mark Harman, Youssef Hassoun,kiran

lakhotia, “Symbolic Search- Based Technique”.

[12]. T.Prem and T.Ravi, “Optimization of Test Cases by
Prioritization,” Journal of computer science, pp. 972-
980, 2013.

[13]. Rupa Kommineni, Vaibhu Ahlawat and anjaneyulu,

“Functional Test Suite Minimization using Genetic
aligorithm,” infosys labs briefings no.2 vol.11 2013.

[14]. Lingming Zhang, Tao Xie, Lu Zhang, Hong mei,

“Test Generation via Dynamic Symbolic Execution
for Mutation Testing”.

[15]. Gordon Fraser and Andreas Zeller, “Mutation-Driven
Generation of Unit Tests and Oracles,” ISSA ’10.
2010.

[16]. L.Baresi, P.L, Lanzi and M.Miraz, “Testful: An

Evolutionary Test Approach for Java,” Proc IEEE
Int’l Conf. Software Testing, Verification and
Validation, pp. 185-194, 2010.

[17]. P.McMinn, “Search-Based Software Test Data

Generation: A Survey,” Software Testing.
Verification and Reliability, vol.14, no.2 pp. 105-156,
2006.

[18]. M. Harrman and P.McMinn. “A Theoretical and

Empirical Study of Search Based Testing: Local,
Global, and Hybrid Search,” IEEE Trans. Software
Eng., vol. 63, no. 2, pp. 226-247, 2010.

[19]. M.Harman, L.Hu, R.Hierons, J.Wegener,

H.Sthamer, “Testability Transformation,” IEEE
Trans. Software Eng,. Vol. 30, no.1, pp. 3-16,2004.

