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ABSTRACT: We consider a steady linear convection – diffusion equation in 2D, present the standard Galerkin (GK) approximation and the Streamline-
Diffusion Finite Element Method (SDFEM) and give an analysis of a posteriori error estimator based on solving a local Neumann problem. The estimator 

gives global upper and local lower bounds on the error measured in the 𝐻1 semi-norm. Our numerical results from GK and SD approximations show that 

the global effectivity indices deteriorate in rates O(𝑃𝑒𝐾) and 𝑂( 𝑃𝑒𝐾) as 𝑃𝑒𝐾 → ∞, respectively i.e., the estimator is over-estimated the error locally 

within a boundary layer which is not resolved by uniform grid refinement.  
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1 INTRODUCTION 
It is well known that the standard Galerkin discretization of 
convection-diffusion equation yields inaccurate, oscillatory 
solutions near boundary layers in convection dominated 
flows and, if the diffusion parameter 𝜖 is decreased without 

proportional reduction of the discretization mesh size, then 
these inaccuracies propagate into regions where the 
solution is smooth [19]. The streamline-upwind Petrov-
Galerkin (SUPG) method  [14], [15] or streamline-diffusion 
finite element method (SDFEM) [18] is designed to 
overcome these problems by introducing a small amount of 
artificial diffusion in the direction of streamlines. The 
numerical solution obtained from the SDFEM has the 
desirable property that the accuracy in regions where the 
exact solution is smooth will not be degraded as a result of 
discontinuities and layers in the exact solution [26], [20]. 
However, the numerical solution obtained from the SDFEM 
can be oscillatory in regions where there are layers. To 
obtain an accurate finite element solution on a given mesh, 
usually a so-called quasi-uniform or isotropic mesh is 
desirable [6]. One commom technique to increase the 
accuracy of the finite element solution is mesh refinement, 
the so-called h-method. For a refinement procedure to 
succeed, reliable and efficient a posterori error estimators 
are needed. For the reliability and efficiency of a posteriori 
error estimators, a standard measure is the so-called 
effectivity index, defined as 
𝑋𝜂 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑡𝑟𝑢𝑒 𝑒𝑟𝑟𝑜𝑟 . An estimator is called 

asymptotically exact if its effectivity index converges to 1 
when the mesh size approaches 0. If the effectivity index is 
much smaller than 1, the estimator is under- estimating the 
error. On the other hand, if the effectivity index is much 
greater than 1, the estimator is over-estimating the error. If 
the estimator does not under-estimate or over-estimate the 
error globally, then the estimator is reliable, meaning the 
error on the global domain can be properly controlled by the 
estimator. If the estimator does not under-estimate or over-
estimate the error locally, then the error estimator is 
efficient, meaning the estimator is able to pinpoint exactly 
where the error is large and where the error is small. For 
two-dimensional problems, several estimators have been 
shown to be asymptotically exact when used on uniform 
meshes provided the solution of the problem is smooth 
enough [4], [7],  [8]. Estimators based on solving a local 

Neumann problem, so-called Neumann-type estimators, 
were first given by [5]. These estimators have been studied 
by many researchers such as [2], [11], [21], [24], [27], [29]. 
Our aim is to analyze the reliability of the error estimator 
proposed by Kay and  Silvester [24] which is an extension 
of the work of Verfurth [28]. In their work, they modify the 
well-known Bank and Weiser estimator [5], and using the 
idea of Ainsworth & Oden [1], they solve a local (element) 
Poisson problem, over a suitably chosen (higher order) 
approximation space with data from interior residuals and 
flux jumps along element edges.  An outline of  this paper is 
as follows. In Section 2, we present the variational 
formulation and its finite element discretization of the steady 
convection-diffusion equation. In Section 3, we discuss the 
theoretical analysis of the Numann-type a posreriori 
estimator. In Section 4, we present the numerical results 
and the effectivity indices for a posteriori estimator and 
finally, we draw a conclusion. 
  

2 LINEAR CONVECTION-DIFFUSION 
EQUATION 

We consider the following steady, linear convection-
diffusion equation 
 −𝜖∇2u + 𝐛. ∇u = f  in  𝛺,    (2.1a)      

                      𝑢 = 𝑔 on 𝛤𝐷 ,    (2.1b)                 

                     
𝜕𝑢

𝜕𝑛
= 0 on  𝛤𝑁,   (2.1c)    

 
where   Ω 𝘊 IR2  is a bounded polygonal domain with 
Lipschitz boundary  𝜕Ω = 𝛤𝐷 ∪ 𝛤𝑁 and 𝛤𝐷 ∩ 𝛤𝑁 = ∅.  We are 

interested in the convection dominated case and assume 
that  
 (A.1)  0 ≤ 𝜖 ≪ 1, 

(A.2)  ∇. 𝒃 = 0, 

(A.3)   𝒃 ∞,Ω = 1, 

(A.4)  𝒃. 𝑛 ≥ 0 𝑜𝑛 𝛤𝑁 . 
The 𝐿2 norm and the 𝐻1 semi-norm, also called energy 

norm are defined as  

 𝑢 𝐻0(Ω) =  𝑢 𝐿2(Ω) =  ∫ 𝑢 2𝑑Ω
Ω

 
1 2 

   and 

 𝑢 𝐻1(Ω) =  ∇𝑢 𝐿2(Ω) =  ∫   𝐷𝑖
1𝑢 2𝑑

𝑖=1Ω
 

1 2 
  

∀ 𝑢 ∈  𝐻1(Ω), respectively. We shall denote the above norm 

and semi-norm by the following convention   .  𝑘,Ω =
 𝑢 𝐻𝑘(Ω) and  ∇.  𝑘,Ω =  𝑢 k,Ω =  𝑢 𝐻𝑘(Ω) if no subscript index 
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is given then we assume an ordinary 𝐿2 norm,   .  0,Ω , and if 

no subscript index is given then we shall assume it is the 
whole of Ω. To define weak form of  (2.1),  we need two 

classes of functions: the trial functions 𝐻𝐸
1 and the test 

solutions 𝐻𝐸0

1 : 

 𝐻𝐸
1 =  𝑢 ∈ 𝐻1 𝛺 ∶ 𝑢 = 𝑔 on 𝛤𝐷    

 𝐻𝐸0

1 =  𝑢 ∈ 𝐻1 𝛺 ∶ 𝑢 = 0 on 𝜕𝛺   

and the standard variational formulation of  problem  (2.1)  
is given by: find 𝑢 ∈ 𝐻𝐸

1 such that  

𝐵 𝑢, 𝑣 = 𝐹 𝑣    ∀𝑣 ∈  𝐻𝐸0

1                                           (2.2) 

where          
𝐵 𝑢, 𝑣 =  𝜖 ∇𝑢, ∇𝑣 +  𝐛. ∇u, v   and 𝐹 𝑣 =  𝑓, 𝑣  
Let 𝒯𝑕 =  𝐾  be a decomposition of 𝛺 into triangles or 

quadrilaterals.        
We need to make the following geometrical assumptions on 
the family of triangulations 𝒯𝑕  

1. Admissibility: whenever 𝐾1𝑎𝑛𝑑 𝐾2 belongs to 𝒯𝑕 , 
𝐾1 ∩ 𝐾2 is either empty, or reduced to a common 

vertex, or to a common edge 
2. 𝑕𝑘 = the diameter of 𝐾 = the longest side of 𝐾 ∈ 𝒯𝑕  

3.  𝜌𝑘= the supremum of the diameter of the balls 

inscribed in 𝐾 ∈ 𝒯𝑕  

4. Shape regularity: the ratio of  𝑕𝑘  to 𝜌𝑘  is uniformly 
bounded i.e.,  

           
𝑕𝑘

𝜌𝑘
≤ 𝛽𝑘  ∀𝐾 ∈ 𝒯𝑕  

which means for any 𝑕 > 0 and for any 𝐾 ∈ 𝒯𝑕  there exists a 

constant 𝛽0 > 0 such that 𝛽𝑘 ≥ 𝛽0 , where 𝛽𝑘  denotes the 

smallest angle in any  𝐾 ∈ 𝒯𝑕 . We define the finite element 

spaces 

𝑉𝑕 =  𝑣 ∈ 𝐻1 𝛺 ∶  𝑣│𝐾 ∈ 𝑃1 𝐾   ∀𝐾 ∈ 𝒯𝑕  

  for triangular elements and  

 𝑉𝑕 =  𝑣 ∈ 𝐻1 𝛺 ∶  𝑣│𝐾 ∈ 𝑄1 𝐾   ∀𝐾 ∈ 𝒯𝑕  

 for rectangular elements, where 𝑃1 𝐾  is the space of 

polynomials of degree not greater than 1, and 𝑄1 𝐾  is the 

space of polynomials of complete degree 1 on 𝐾. In the 

case of convection – dominated problem, the standard 
Galerkin approximation of (2.2) may produce unphysical 
behavior, oscillation, if the mesh is too coarse in critical 
regions. To circumvent these difficulties, stability of the 
discretization has to be increased by introducing artificial 
diffusion along streamlines. The Streamline – Diffusion 
Finite Element Method (SDFEM) [18] or [14], [15] stabilizes 
a convection – dominated problem by adding weighted 
residuals to the standard Galerkin finite element method for 
hyperbolic equations which combines good stability with 
high order accuracy, convergence results are available (see 
[22] ). The SDFEM yields the following discrete problem 
obtained: Find 𝑢𝑕 ∈ 𝑉𝑕  such that  

𝐵 𝑢𝑕 , 𝑣𝑕 = 𝐹 𝑣𝑕    ∀ 𝑣𝑕 ∈ 𝑉𝑕 , 𝑣𝑕 = 0 𝑜𝑛 𝛤𝐷                      (2.3)  

where                                                                                               
𝐵𝑆𝐷 𝑢𝑕 , 𝑣𝑕 =
𝜖 ∇𝑢𝑕 , ∇𝑣𝑕 +  𝒃. ∇𝑢𝑕 , 𝑣𝑕 +  𝛿𝐾(𝒃. ∇𝑢𝑕 , 𝒃. ∇𝑣𝑕)𝐾𝐾∈ 𝒯𝑕

 

and  𝐹𝑆𝐷 𝑣𝑕 =  𝑓, 𝑣𝑕 +  𝛿𝐾(𝑓, 𝒃. ∇𝑣𝑕)𝐾𝐾∈ 𝒯𝑕
. 

In (2.3), a constant 𝛿𝐾 must be chosen for every element K. 

Let the mesh Peclet number be defined by ,   Pek =

 𝑏 ∞,𝐾𝑕𝑘 𝜖  where  .  ∞,𝐾 denotes the norm in  𝐿∞ 𝐾  
2

. 

From the analysis of the SDFEM, the following choice of 𝛿𝐾 

are optimal; Elman et al. [5]: 

 𝛿𝑘 =  

𝑕𝑘

2
 1 −

1

Pe k
    for Pek > 1,

0                     for Pek ≤ 1,

                                     (2.4) 

where 𝑕𝑘  is a measure of the element length in the direction 

of the wind. For other parameter choice, see [16], [17], [25], 
[12].  
 

3   NEUMANN – TYPE A POSTERIORI ERROR 
ESTIMATION  

In this topic, we introduce the analysis of error estimator 
proposed by Kay and Silvester [24] which is an extension of 
the work of Verfurth [28]. In their work, they modify the well-
known Bank and Weiser estimator [5] and using the idea of 
Ainsworth & Oden [1], they solve a local (element) Poisson 
problem over a suitably chosen (higher order) 
approximation space with data from interior residuals and 
flux jumps along element edges. We now introduce some 
definitions and notations that will be needed for the error 
estimates. We denote by ℰ(𝐾) the set of edges of element 

𝐾 ∈ 𝒯𝑕 , by ℰ𝑕 =  ℰ 𝐾 𝐾∈𝒯𝑕
  the set of all element edges 

and the subsets relating to internal, Dirichlet and Neumann 
edges respectively as  ℰ𝑕,𝛺 =  𝐸 ∈ ℰ𝑕 : 𝐸 𝘊 𝛺 , ℰ𝑕,𝐷 =
 𝐸 ∈ ℰ𝑕 : 𝐸 𝘊 𝜕𝛺𝐷  and ℰ𝑕,𝑁 =  𝐸 ∈ ℰ𝑕 : 𝐸 𝘊 𝜕𝛺𝑁  so that 

ℰ𝑕 = ℰ𝑕,𝛺    ℰ𝑕,𝐷     ℰ𝑕,𝑁. We denote 𝒩𝐾  the set of vertices 

of 𝐾 ∈ 𝒯𝑕  and by 𝒩𝑕 =  𝒩𝐾𝐾 ∈ 𝒯𝑕
 the set of all element 

vertices (that do not lie on the Dirichlet boundary 𝛤𝐷). Let  
𝒩𝐸  be the set of vertices of 𝐸 ∈ ℰ𝑕 , and for 𝐾 ∈ 𝒯𝑕 , 𝐸 ∈ ℰ𝑕  

and 𝚡 ∈ 𝒩𝑕  we define the local „patches‟ of elements as  

𝜔𝐾 =  𝐾′
ℰ 𝐾   ℰ 𝐾′   ≠ ∅ ,         𝜔𝐸 =  𝐾′

𝐸∈ℰ 𝐾′  ,                       

𝜔 𝐾 =  𝐾′
𝒩𝐾   𝒩𝐾′ ≠ ∅ ,             𝜔 𝐸 =  𝐾′

𝒩𝐸   𝒩𝐾′ ≠ ∅ .  

For the lowest order 𝑃1 or 𝑄1 approximations over a 

triangular or rectangular element subdivision, ∆𝑢𝑕│𝐾 = 0, 

so that the interior residual of element 𝐾 is given by  

𝑅𝐾 =  𝑓 − 𝐛. ∇𝑢𝑕 │𝐾                                                      (3.1) 
 And the internal residual is approximated by  

𝑅𝐾
0 = 𝒫𝐾

0(𝑅𝐾)                                                               (3.2)   

where 𝒫𝐾
0 is the 𝐿2(𝐾) – projection onto 𝑃0(𝐾).  

For any edge 𝐸 of an element 𝐾 ∈ 𝒯𝑕 , we define the flux 

jump as  

𝑅𝐸 =  

1

2
 
𝜕𝑢𝑕

𝜕𝑛𝐸
 
𝐸

           𝑖𝑓 𝐸 ∈ ℰ𝑕,𝛺  

−∇uh . n  E,K        if  𝐸 ∈ ℰ𝑕,𝑁   

0                        𝑖𝑓 𝐸 ∈ ℰ𝑕,𝐷  

                                       (3.3) 

where 
𝜕𝑢𝑕

𝜕𝑛𝐸
 is a constant function on the inter-element edge 

𝐸 and  
𝜕𝑢𝑕

𝜕𝑛𝐸
  measures the jump of 

𝜕𝑢𝑕

𝜕𝑛𝐸
 across 𝐸, that is, for 

𝐸 ∈ ℰ 𝐾    ℰ 𝑆 , 𝐾, 𝑆 ∈ 𝒯𝑕  and defining 𝑛𝐸,𝐾 and 𝑛𝐸,𝑆 to be 

the outward normals with respect to the edge 𝐸 from 

element 𝐾 and 𝑆 respectively, we have 

  
𝜕𝑢𝑕

𝜕𝑛𝐸
 
𝐸

=  ∇𝑣│𝐾 − ∇𝑣│𝑆  .  𝑛𝐸,𝐾 =   ∇𝑣│𝑆 − ∇𝑣│𝑆  .  𝑛𝐸,𝑆   

                                                                             (3.4)                        
 The approximation space is denoted by  
 𝓠𝑲 = 𝚀𝑲 ⊕ 𝑩𝑲                                 

                                     (3.5)  
 consisting of edge and interior bubble functions 
respectively:  
𝚀𝑲 =

𝑠𝑝𝑎𝑛 𝜓𝐸: 𝐾 →  ℝ │0 ≤ 𝜓𝐸 ≤ 1, 𝐸 ∈ ℰ 𝐾       ℰ𝑕,𝛺      ℰ𝑕,𝑁       

                                                                                        (3.6) 
 where each member of the space is a quadratic (or 
biquadratic) edge bubble function 𝜓𝐸 that is nonzero on 

edge  𝐸 of element 𝐾, but non zero valued on all other 
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edges of 𝐾. 𝐵𝐾 is the space spanned by interior cubic (or 

biquadratic) bubbles  𝜙𝐾 i.e., 

 𝐵𝐾 =  𝜙𝐾 ∶ 𝐾 →  ℝ │ 0 ≤ 𝜙𝐾 ≤ 1,   𝜙𝐾 = 0  𝑜𝑛 𝜕𝐾          (3.7)                                

where each function is associated with an element 𝐾, and is 

zero on all edges of 𝐾, nonzero on the interior of 𝐾, and 

𝜙𝐾 = 1 at the centeroid of 𝐾. The upshot is that the local 

problems are always well posed and that for each triangular 
(or rectangular) element a 4x4 (5x5) system of equations 
must be solved to compute 𝑒𝐾. For an element 𝐾 ∈ 𝒯𝑕 , the 

local error estimate is the energy norm of 𝑒𝐾 given by  

𝜂𝐾 =  ∇𝑒𝐾 𝐾                                                                     
(3.8) 

 where   𝑒𝐾 =  𝑢 −   𝑢𝑕 │𝐾 ∈ 𝒬𝐾  satisfies  

𝜖 ∇𝑒𝐾 , ∇𝑣 𝐾 =  𝑅𝐾
0 , 𝑣 𝐾 −

1

2
𝜖   𝑅𝐸 , 𝑣 𝐸𝐸∈ℰ 𝐾     ∀ 𝑣 ∈ 𝒬𝐾    

                                                                                        (3.9)                                                  
In the following, we make frequent use of the short-hand 
notation  𝑓 𝑆 to denote 𝐿2- norm of a function 𝐿2(𝑆). The 

Kay and Silvester‟s upper estimation is the following. 
Theorem 1. If the variational problem  (2.2)  solved with a 

grid of bilinear rectangular elements, and if the rectangle 
aspect ratio condition is satisfied with 𝛽𝛺 , then, the 
estimator 𝜂𝐾 computed via  (3.9) safisfies the upper 

bound property 

 ∇eh  ≤  𝐶 𝛽𝛺   𝜂𝐾
2

𝐾 ∈ 𝒯𝑕  +      
𝑕𝐾

𝜖
 𝒃  𝐾 

2

𝐾∈ 𝒯𝑕   𝑅𝐾 −

     𝑅𝐾
0 𝐾

2  
1 2 

                                                                   (3.10)                                                  

where 𝐶 is independent of 𝜖 and 𝑕 and 𝑕𝐾 is the length of 

the longest edge of element 𝐾.  
 
Proof. Using the assumptions (A.2) - (A.4) we have  

     𝐵𝑆𝐷(𝑒𝑕 , 𝑒𝑕) ≥ 𝜖 ∇eh 𝛺
2                                             (3.11)                  

     Given  𝑒𝑕 = 𝑢 −   𝑢𝑕 ∈ 𝐻𝐸0

1  there exist a quasi – 

interpolant 𝑒𝑕
∗ ∈ 𝑉𝑕 ∩ 𝐻𝐸0

1  (see [6]) such that 

      𝑒𝑕 − 𝑒𝑕
∗ 𝐾 ≤ 𝐶1 𝛽𝜔 𝐾

 𝑕𝑘 ∇eh 𝜔 𝐾
   ∀ 𝐾 ∈ 𝒯𝑕            (3.12)     

      𝑒𝑕 − 𝑒𝑕
∗ 𝐸 ≤ 𝐶2 𝛽𝜔 𝐾

 𝑕𝐸
1 2  ∇eh 𝜔 𝐾

  ∀ 𝐸 ∈ ℰ𝑕         (3.13)    

     Using the Galerkin orthogonality property, the bilinear 
form 𝐵𝑆𝐷(𝑒𝑕 , 𝑒𝑕) is written as     

   𝐵𝑆𝐷 𝑒𝑕 , 𝑒𝑕 = 𝐵𝑆𝐷 𝑒𝑕 , 𝑒𝑕 − 𝑒𝑕
∗ + 𝐵𝑆𝐷 𝑒𝑕 , 𝑒𝑕

∗   
   = 𝐵𝑆𝐷 𝑒𝑕 , 𝑒𝑕 − 𝑒𝑕

∗ −  𝛿𝐾(𝑓 − 𝒃. ∇𝑢𝑕 , 𝒃. ∇𝑒𝑕
∗)𝐾𝐾∈ 𝒯𝑕

      

   = 𝐵𝑆𝐷 𝑢, 𝑒𝑕 − 𝑒𝑕
∗ − 𝐵𝑆𝐷 𝑢𝑕 , 𝑒𝑕 − 𝑒𝑕

∗ −  𝛿𝐾(𝑓 −𝐾∈ 𝒯𝑕

      𝒃. ∇𝑢𝑕 , 𝒃. ∇𝑒𝑕
∗)𝐾     

   = (𝑓, 𝑒𝑕 − 𝑒𝑕
∗) − 𝐵𝑆𝐷 𝑢𝑕 , 𝑒𝑕 − 𝑒𝑕

∗ −  𝛿𝐾(𝑓 −𝐾∈ 𝒯𝑕

       𝒃. ∇𝑢𝑕 , 𝒃. ∇𝑒𝑕
∗)𝐾                                                         (3.14)    

   Hence, using (3.11) in (3.14) and integrating by parts 
elementwise with  𝑒𝑕 = 𝑒𝑕

∗ on 𝛤𝐷gives  

   𝜖 ∇eh 𝛺
2 ≤  [𝐾∈ 𝒯𝑕

 𝑓 − 𝒃. ∇𝑢𝑕 , 𝑒𝑕 − 𝑒𝑕
∗ 𝐾  

    −𝛿𝐾(𝑓 − 𝒃. ∇𝑢𝑕 , 𝒃. ∇𝑒𝑕
∗)𝐾 +

𝜖

2
   

𝜕𝑢𝑕

𝜕𝑛𝐸
 
𝐸

, 𝑒𝑕 −𝐸∈ℰ 𝐾    ℰ𝑕 ,𝛺

        𝑒𝑕
∗ 𝐸 − 𝜖  

𝜕𝑢𝑕

𝜕𝑛𝐸
, 𝑒𝑕 − 𝑒𝑕

∗ 𝐸𝐸∈ℰ 𝐾      ℰ𝑕 ,𝑁
]    

=

   𝑅𝐾 , 𝑒𝑕 − 𝑒𝑕
∗ 𝐾 − 𝛿𝐾(𝑅𝐾 , 𝒃. ∇𝑒𝑕

∗)𝐾 +𝐾∈ 𝒯𝑕

         
𝜖

2
  𝑅𝐸 , 𝑒𝑕 − 𝑒𝑕

∗ 𝐸𝐸∈ ℰ𝑕 ,𝛺∪ ℰ𝑕 ,𝑁                                   (3.15)                                                                                                        

   From coercivity estimate, interpolation estimates (3.12) & 
(3.13) and the Cauchy-Schwarz inequality, it can be 
shown  

   𝜖 ∇eh 𝛺
2 ≤ 𝐶 𝛽𝛺   𝑕𝐾   𝑅𝐾

0 𝐾 +  𝑅𝐾 − 𝑅𝐾
0 𝐾 +𝐾∈ 𝒯𝑕

       
𝜖

2
 𝑕𝐾

1
2  𝑅𝐸 𝐸𝐸∈ ℰ𝑕 ,𝛺∪ ℰ𝑕 ,𝑁

  ∇eh 𝜔 𝐾
   

   ≤ 𝐶 𝛽𝛺  ∇eh 𝛺    𝑕𝐾
2  𝑅𝐾

0 𝐾
2 + 𝑕𝐾

2  𝑅𝐾 − 𝑅𝐾
0 𝐾

2
𝐾∈ 𝒯𝑕

+

       
𝜖

2
 

2
 𝑕𝐸 𝑅𝐸 𝐸

2
𝐸∈ ℰ𝑕 ,𝛺∪ ℰ𝑕 ,𝑁

                                        (3.16)                                                                       

   Now, it remains to bound  𝑅𝐾
0 𝐾 and  𝑅𝐸 𝐸 in terms of 𝜂𝐾. 

Recall that 𝑅𝐾
0  is constant and for 𝐾 ∈  𝒯𝑕 , consider a 

function 𝜔𝐾 = 𝑅𝐾
0𝜙𝐾  where 𝜙𝐾 ∈ 𝐵𝐾 . So 𝜔𝐾 an interior 

bubble function with maximum value  𝑅𝐾
0 𝐾 at the center 

of the element. As 0 ≤ 𝜙𝐾 ≤ 1, one can write   

      𝑅𝐾
0 𝐾

2 ≡  𝑅𝐾
0 , 𝑅𝐾

0  𝐾 = 𝐶1 𝑅𝐾
0 , 𝜔𝐾 𝐾                            (3.17)                    

     Using (3.9) and the Cauchy-Schwarz inequality, imply 
that  

      𝑅𝐾
0 𝐾

2 ≤ 𝐶1𝜖(∇eK , ∇𝜔𝐾)𝐾 ≤ 𝐶2 ∇eK 𝐾 ∇𝜔𝐾 𝐾          
(3.18) 
     where 𝐶2 = 𝐶1𝜖. 
     Now using the inverse estimate (see  [10, Lemma 1.26])  
      ∇𝜔𝐾 𝐾 ≤ 𝐶3𝑕

−1 𝜔𝐾 𝐾                                            (3.19) 

     and by definition  𝜔𝐾 𝐾 ≤  𝑅𝐾
0 𝐾, we get  

      𝑅𝐾
0 𝐾 ≤ 𝐶4𝑕

−1 ∇eK 𝐾                                             (3.20) 
     where 𝐶4 = 𝐶2𝐶3.    

     Now we deal with the edge residual term 𝑅𝐸. For 

𝐸 ∈ ℰ 𝐾 , consider 𝜔𝐸 = 𝑅𝐸𝜓𝐸 where 𝜓𝐸 ∈ 𝚀𝐾  ∁ 𝒬𝐾. This 

is the bubble function that is only nonzero on edge 𝐸. 
Note that we can write each norms of 𝜔𝐸 as norms over 

the edges as follows (see [23, Lemma 3.2])   

      𝜔𝐸 𝐾′ ≤ 𝑕1 2 
𝐸 𝜔𝐸 𝐸  

     ∇𝜔𝐸 𝐾′ ≤ 𝑕−1 2 
𝐸 𝜔𝐸 𝐸  

    and since  𝜔𝐸 𝐸 <  𝑅𝐸 𝐸 we can have  

     𝜔𝐸 𝐾′ ≤ 𝑕𝐸
1 2  𝑅𝐸 𝐸                                                 (3.21) 

     ∇𝜔𝐸 𝐾′ ≤ 𝑕𝐸
−1 2  𝑅𝐸 𝐸                                             (3.22) 

    Note  

     𝜖 𝑅𝐸 𝐸
2 = 𝜖 ∫  𝑅𝐸 

2
𝐸

𝑑𝑠  

       ≤ 𝐶5𝜖 ∫ 𝑅𝐸(
𝐸

𝑅𝐸𝜓𝐸)𝑑𝑠 ≤ 𝐶5𝜖 𝑅𝐸 , 𝜔𝐸                        (3.23)                

    Using (3.9), (3.21) and (3.22), we have  

 𝜖 𝑅𝐸 𝐸
2 ≤ 𝐶5   𝜖 ∇𝑒𝐾′  𝐾′  ∇𝜔𝐸 𝐾′ +  𝑅𝐾′

0  
𝐾′  𝜔𝐸 𝐾′  𝐾′ ∁ 𝜔𝐸

                                 

  ≤ 𝐶5 𝛽𝜔𝐸
  𝑅𝐸 𝐸   𝜖𝑕𝐸

−1 2  ∇𝑒𝐾′  𝐾′ + 𝑕
𝐾′
1 2 

 𝑅𝐾′
0  

𝐾′  𝐾′ ∁ 𝜔𝐸
               

                                                                                      (3.24)                                                                                                                                 
By plugging (3.20) and (3.24) into (3.16), the global upper 

bound (3.10) holds. 
 
Remark 1. If 𝑓 and 𝒃 are both piecewise constant functions 

then the consistency error term  𝑅𝐾 − 𝑅𝐾
0 𝐾 is identically 

zero. Otherwise, if 𝑓 and 𝒃 are smooth, this term represents 

a high-order perturbation. In any case the estimator 𝜂𝐾 is 

reliable in the sense that the upper bound (3.10) is 
independent of 𝑕 and 𝜖. Establishing that the estimated 

error 𝜂𝐾 gives a lower bound on the local error is not 

possible. The difficulty is generic for any local error 
estimator: the local error is overestimated within 
exponential boundary layers wherever such layers are not 
solved by the mesh. Thus, in contrast to the nice lower 
bound that holds when solving Poisson‟s equation, see [10, 
Proposition 1.28], the tightest lower bound that can be 
established for the convection-diffusion equation is the 
following. 
Theorem 2. If the variational problem (2.2) with  𝒃 ∞ = 1 is 

solved via either the Galerkin formulation or the SD 
formulation (2.3), using a grid of bilinear rectangular 
elements, and if the rectangle aspect ratio condition is 
satisfied, then the estimator 𝜂𝐾 computed via (3.9) is a 

local lower bound for 𝑒𝑕 = 𝑢 − 𝑢𝑕  in the sense that  
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     𝜂𝐾 ≤ 𝐶 𝛽𝜔𝐾
 ( ∇𝑒𝑕 𝜔𝐾

+  
𝑕𝑘

𝜖𝐾 ∁ 𝜔𝐾
 𝐛. ∇𝑒𝑕 𝐾 +  

         
𝑕𝑘

𝜖𝐾 ∁ 𝜔𝐾
 𝑅𝐾 − 𝑅𝐾

0 𝐾)                                       (3.25)                      

where 𝐶 is independent of 𝜖, and 𝜔𝐾 represents the patch 
of five elements that have at least one boundary edge 𝐸 

from the set ℰ 𝐾 .  
 
Proof. To begin note that as 𝑒𝑘 ∈ 𝒬𝐾 we can put 𝑣 = 𝑒𝑘  in 

(3.9) to get  

      𝜖 ∇𝑒𝑘 𝐾
2 =  𝑅𝐾

0 , 𝑒𝑘 𝐾 −
1

2
𝜖   𝑅𝐸 , 𝑒𝑘 𝐸𝐸∈ℰ 𝐾     

      ≤  𝑅𝐾
0 𝐾 𝑒𝑘 𝐾 +

𝜖

2
  𝑅𝐸 𝐸 ∇𝑒𝑘 𝐾𝐸∈ℰ 𝐾                    (3.26) 

      Note that with Poincare – Fridrichs inequality and a 
scaling argument we can write  

       𝑒𝑘 𝐾 ≤ 𝐶 𝛽𝐾 𝑕𝐾 ∇𝑒𝑘 𝐾 ,                                        (3.27)                 

       𝑒𝑘 𝐸 ≤ 𝐶 𝛽𝐾 𝑕𝐸
1 2  ∇𝑒𝑘 𝐾                                       (3.28) 

      Substituting these into (3.26) gives   

      𝜖 ∇𝑒𝑘 𝐾 ≤ 𝐶 𝛽𝐾  𝑕𝐾 𝑅𝐾
0 𝐾 +

𝜖

2
 𝑕𝐸

1 2  𝑅𝐸 𝐸𝐸∈ℰ 𝐾              

                                                                                      (3.29)      

      Now we only need to bound 𝑕𝐾 𝑅𝐾
0 𝐾 and 𝑕𝐸

1 2  𝑅𝐸 𝐸 in 

terms of ∇𝑒𝑘 . For 𝐾 ∈  𝒯𝑕 , consider 𝜔𝐾 = 𝑅𝐾
0𝜓𝐾 as above. 

Then  
     𝐶 𝑅𝐾

0 𝐾
2 ≤  𝑅𝐾

0 , 𝜔𝐾 𝐾  =  𝑅𝐾
0 − 𝑅𝐾 , 𝜔𝐾 𝐾 + 𝐵𝑆𝐷 𝑢 −

𝑢𝑕 , 𝜔𝐾   

=  𝑅𝐾
0 − 𝑅𝐾 , 𝜔𝐾 𝐾 + 𝜖 ∇𝑒𝑕 , ∇𝜔𝐾 𝐾 +  𝐛. ∇𝑒𝑕 , 𝜔𝐾 𝐾 

   ≤  𝑅𝐾
0 − 𝑅𝐾 𝐾 𝜔𝐾 𝐾 + 𝜖 ∇𝑒𝑕 𝐾 ∇𝜔𝐾 𝐾 +  𝐛. ∇𝑒𝑕 𝐾 𝜔𝐾 𝐾        

                                                                                    (3.30)         
      Hence, using   ∇𝜔𝐾 𝐾 ≤  𝑅𝐾

0 𝐾 and  (3.11) we get 

      𝑕𝐾 𝑅𝐾
0 𝐾 ≤ 𝐶 𝑕𝐾 𝑅𝐾

0 − 𝑅𝐾 𝐾 + 𝜖 ∇𝑒𝑕 𝐾 + 𝑕𝐾 𝐛. ∇𝑒𝑕 𝐾              
                                                                                      (3.31) 
      Similarly, for 𝐸 ∈ ℰ 𝐾 ∩ ℰ𝑕,𝛺 and by using 𝜔𝐸, it can be 

shown  
     𝐶𝜖 𝑅𝐸 𝐸

2 ≤ 𝜖 𝑅𝐸 , 𝜔𝐸 𝐸 =  𝜖 ∇uh , ∇𝜔𝐸 𝐾′𝐾′ ∁ 𝜔𝐸
, by the  

definition of 𝑅𝐸 and the Green formula 

    =  −𝜖 ∇𝑒𝑕 , ∇𝜔𝐸 𝐾′𝐾′ ∁ 𝜔𝐸
+ 𝜖 ∇u, ∇𝜔𝐸 𝐾′  

    =  [ 𝑅𝐾′ − 𝑅𝐾′
0 + 𝑅𝐾′

0 − 𝐛. ∇𝑒𝑕 , 𝜔𝐸 𝐾′𝐾′ ∁ 𝜔𝐸
 

− 𝜖 ∇𝑒𝑕 , ∇𝜔𝐸 𝐾′ ]   
     Thus,                   

     𝜖 𝑅𝐸 𝐸
2 ≤ 𝐶 𝑅𝐸 𝐸𝑕𝐸

−1 2   𝑕𝐾′  𝑅𝐾′
0 − 𝑅𝐾′  

𝐾′ +𝐾′ ∁ 𝜔𝐸

      𝜖 ∇𝑒𝑕 𝐾′ +     𝑕𝐾′  𝐛. ∇𝑒𝑕 𝐾′ + 𝑕𝐾′  𝑅𝐾′
0  

𝐾′                  (3.32)                                                         

      Therefore, by (3.31), we have  

       𝜖𝑕𝐸
1 2  𝑅𝐸 𝐸 ≤ 𝐶   𝑕𝐾′  𝑅𝐾′

0 − 𝑅𝐾′  
𝐾′ + 𝜖 ∇𝑒𝑕 𝐾′ +𝐾′ ∁ 𝜔𝐸

         𝑕𝐾′  𝐛. ∇𝑒𝑕 𝐾′                                                          (3.33)                                                                                                  

By plugging (3.31) and (3.33) into (3.29) the local lower 
bound  (3.25) holds.          

 
Remark 2.  The same estimate is obtained if local 
convection-diffusion problems are solved in place of (3.9), 
see [29]. The restriction that  𝒃 ∞ = 1 can be removed; it is 

only included to simplify the proof. From the bound  (3.10) 
and (3.25), the structure of the “optimality gap” term 

 
𝑕𝑘

𝜖𝐾 ∁ 𝜔𝐾
 𝐛. ∇𝑒𝑕 𝐾, leads to the expectation that 𝜂𝐾 will be 

an overestimate for  ∇𝑒 𝐾 in any element 𝐾 where first, the 

element Peclet number, 
𝑕𝑘

2𝜖
 , is significantly bigger than 

unity, and second, the derivative of the error in the 
streamline direction, namely  𝐛. ∇𝑒 𝐾, is commensurate 

with the derivative of the error in the cross wind direction, 
 𝐛⊥ . ∇𝑒 𝐾. Such a deterioration in performance is realized in 

the case of problem given in section (4) next, if 𝜖 is 

decreased while keeping the grid fixed.  
 

4 NUMERICAL RESULTS: EFFECTIVITY INDICES 
In this section, we present an example to compare the 
solution qualities from the GK method and the SDFEM and 
we compute global effectivity indices. In order to see how 
the effectivity indices change in terms of the diffusive 
parameter 𝜖, mesh size 𝑕, and element Peclet number 

𝑕𝑘 2𝜖 ,  the problem is solved over uniform meshes with 

mesh size 𝑕 =
1

8
 and 

1

16
 for 𝜖 =

1

16
,

1

64
,

1

256
,

1

1024
 and 

1

4096
 with 

𝑃𝑒𝐾 = 𝑕𝑘 2𝜖 = 1, 4, 16, 64 and 256.  
Problem 1. Consider the function 

 𝑢(𝑥, 𝑦) = 𝑥  
1−𝑒𝑦−1 𝜖 

1−𝑒−2 𝜖                                                     (4.1)  

 satisfies equation (2.1) with 𝒃 = (0,1) and 𝑓 = 0. Dirichlet 

conditions on the boundary 𝜕𝛺 are determined by (4.1) and 

satisfy  
𝑢 𝑥,−1 = 𝑥,     𝑢 𝑥, 1 = 0,     𝑢 −1, 𝑦 ≈ −1,     𝑢 1, 𝑦 ≈ 1 

 where the latter two approximations hold except near 𝑦 =
1. Clearly, exponential layer near 𝑦 = 1 is expected, the 

layer is determined by 𝑒1−𝑦 𝜖  and has width proportional to 

𝜖, see Eckhaus (1979) and Roos et al. ((1996), section 

III.1.3). We solve (2.3) using uniform NxN grids of square 
elements i.e., 𝑄1 approximation over a domain 𝛺 =
 0,1 𝑥 [0,1]. To illustrate the qualities of SDFEM and GK 

method for 𝑃𝑒𝐾 > 1, we consider the case N = 8, 16, 32 & 

64 for 𝜖 = 1 1024  and plot isolines of the computed 

solution and the estimated error in Fig. 2, Fig. 3, Fig 4, Fig. 
5 & Fig. 6. Clearly, Fig. 2 shows GK solution suffer with 
serious oscillation on whole domain but Fig. 3, Fig. 4, Fig. 5 
& Fig. 6 show SD solutions maintain good solution quality 
with small oscillation in the layer region as h increases. 
However, the solution still contains oscillations.       
                                                                        

 
 

Fig. 1. (a) Contour plot  and (b) three-dimensional surface 
plot (bottom) of an accurate FE solution, for 𝜖 = 1 200 . 
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Fig. 2. (a) GK solution and (b) estimated error: 16 x 16 
uniform grid 

 

 
 

Fig. 3. (a)  SD solution and (b) estimated error: 8 x 8 
uniform grid 

 

 
 

Fig. 4. (a) SD solution and   (b) estimated error: 16 x 16 
uniform grid 

 

 
 

Fig. 5. (a) SD solution and     (b) estimated error: 32 x 32 
uniform grid. 
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Fig. 6. (a) SD solution and (b) estimated error: 64 x 64 
uniform grid. 

                              
Then, an approximation to the exact Galerkin error 𝐸𝑕 =
 ∇𝑒𝑕 𝐾 and the corresponding SD error 𝐸𝑕

∗ =  ∇𝑒𝑕
∗ 𝐾 on 

each element can be computed as using Gaussian 
quadrature, with the MATLAB quadrature function 
dblquad.m. As an example, estimated global errors 

𝜂 =   𝜂𝐾
2

𝐾∈ 𝒯𝑕
 

1 2 
 and corresponding effectivity indices 

𝑋𝜂 = 𝜂 𝐸𝑕  and 𝑋𝜂
∗ = 𝜂∗ 𝐸𝑕

∗ ,  for GK and SD methods are 

presented in the tables below. From a comparison given in 
Table 1, Table 2, Table 3 & Table 4, while the SD errors 𝐸𝑕

∗ 

are smaller than the GK errors 𝐸𝑕 , we observe that the slow 

reduction in the global errors as the grid is successively 
refined. From Table 1 and Table 3, we can see that the 
effectivity indices deteriorates in a rate 𝑂(𝑃𝑒𝐾) as 𝑕 ≫ 𝜖. 

Suggesting that the bound (3.25) is tight in this instance. 
Further, the numerical data in Table 2 and Table 4 also 
show that the global effectivity indices deteriorates in a rate 

of 𝑂( 𝑃𝑒𝐾) as mentioned in Kay and Silvester (2001) and 

Elman et al. (2005). Hence, we note that the local error is 
overestimated within exponential boundary layer. In 
considering the results in Table 1, Table 2, Table 3 & Table 
4, we note that the improvement in performance of SD over 
Galergin might be anticipated from (3.25) – in particular the 
better approximation of the streamline derivative suggests 
that the gap term will be smaller for SD in the limit as 
𝑃𝑒𝐾 → ∞.       

 
TABLE 2 

EXACT ERRORS 𝐸𝑕
∗, ESTIMATED ERRORS (𝜂∗) AND 

EFFECTIVITY INDICES (𝑋𝜂
∗) FOR ELEMENT PECLET 

NUMBER (𝑃𝑒𝐾) SOLVED WITH SD APPROXIMATION 

USING 8 X 8 UNIFORM GRID. 
 

 
                             

    𝜖               𝐸𝑕
∗                𝜂∗                𝑋𝜂

∗              𝑃𝑒𝐾 

1 16          1.675            2.114              1.260           1 
 
1 64          4.335            8.852              2.040           4 
 
1 256        9.101            3.613 x 101    3.970          16 

 
1 1024     1.841x101     1.454 x 102    7.900          64 

                                                    
                                                                                                                                                                                                                                                                                                                                                                                 

TABLE 3 
 

EXACT ERRORS (𝐸𝑕 ), ESTIMATED ERRORS (𝜂) AND 

EFFECTIVITY INDICES (𝑋𝜂) FOR ELEMENT PECLET 

NUMBER (𝑃𝑒𝐾) SOLVED WITH GALERKIN 

APPROXIMATION USING 16 X 16 UNIFORM GRID 
 
 

𝜖                 𝐸𝑕              𝜂                    𝑋𝜂                     

𝑃𝑒𝐾 

1 16           1.85               1.515              1.279                

1 
 

1 64           4.917             1.578 x 101    3.210                

4 
 

1 256         1.255 x 101   1.649 x 102    1.314 x 101    

16 
 

1 1024       3.720 x 101   2.311 x 103    6.213 x 101    
64 

 
1 4096       1.347 x 102   3.627 x 104    2.693 x 102    

256 

TABLE 1 
EXACT ERRORS (𝐸𝑕 ), ESTIMATED ERRORS (𝜂) AND 

EFFECTIVITY INDICES (𝑋𝜂) FOR ELEMENT PECLET 

NUMBER (𝑃𝑒𝐾) SOLVED WITH GALERKIN 

APPROXIMATION USING 8 X 8 UNIFORM GRID 
 

𝜖               𝐸𝑕                        𝜂                    𝑋𝜂             

𝑃𝑒𝐾 

1 16           1.850                  3.026                3.220              

1 
 

1 64          5.616                  3.217 x 101      5.730              

4 
 

1 256        1.652 x 101       4.388 x 102      2.65 x 101     
16 

 
1 1024      5.877 x 101       6.778 x 103      1.15 x 102     

64 
 

1 4096     2.274 x 102       1.075 x 105      4.73 x 102    

256 
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TABLE 4 

EXACT ERRORS 𝐸𝑕
∗, ESTIMATED ERRORS (𝜂∗) AND 

EFFECTIVITY INDICES (𝑋𝜂
∗) FOR ELEMENT PECLET 

NUMBER (𝑃𝑒𝐾) SOLVED WITH SD APPROXIMATION 

USING 16 X 16 UNIFORM GRID. 
 

𝜖                 𝐸𝑕
∗                   𝜂∗                    𝑋𝜂

∗                  

𝑃𝑒𝐾 

1 16          1.185              1.515               1.279                   

1 
 

1 64          4.006              6.599              1.647                    

4 
 

1 256        8.948              2.739 x 101    3.061                   

16 
 

1 1024      1.833 x 101    1.108 x 102    6.045                   

64 
 

1 4096      3.688 x 101    4.445 x 102    1.205 x 101       

256 



5 CONCLUSION  
From our theoretical and numerical results, we observe that 
the estimated error continuously reduces as the grid is 
successively refined. Therefore, the streamline-diffusion 
stabilization using N = 32 & 64 leads to the reliable error 
estimator for all 𝜖 ≥ 𝑂 10−3 . In the context of the 

incompressible fluid flow models, exponential boundary 
layers only arise when downstream boundary conditions 
are inappropriately specified. In particular, a “hard” Dirichlet 
boundary condition on an outflow boundary should never be 
imposed; a zero Neumann condition is invariably more 
appropriate [13]. To increase accuracy of the solution in the 
region containing layer, adaptive mesh refinement and 
mesh movement based on a posteriori error estimation for 
the convection-diffusion equation are topics of our future 
work. 
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