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Abstract: The problem of weekly nonlinear convection in a horizontal mushy layer under suitable assumptions and approximations in a gravity inclined 
environment is studied analytically by applying a modified perturbation technique. The finite amplitude solution for the weakly nonlinear problem is 
obtained under a near eutectic approximation, large far field temperature and for large Stefan number in a gravity inclined environment. Specific 
information with regard to the convective solutions are obtained with regard to the behaviour of the system. From the results it appears that the chimney 
formation gets promoted as the system gets destabilised when the concentration ratio is increased while, the formation of chimneys occurs at a larger 
Darcy Rayleigh number when the concentration ratio is decreased.  Also, it is found that the gravity inclination reduces the tendency for chimney 
formation under the given physical conditions. It is concluded that by a proper choice of the inclination parameter and the governing parameters, it is 
possible to have a good control over the formation of chimneys convection so that the appearance of freckles in the resulting solid during the 
solidification process could be avoided. The results are in excellent agreement with the available results in the limiting cases. 
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1. INTRODUCTION 
A region called “mushy layer” that comprises of partially 
solidified reactive porous materials like, solid crystals 
and interstitial melt, will be formed during the 
solidification of a binary alloy due to the morphological 
instability of the solid-liquid interface [1]. Thus a mushy 
layer is a reactive two-phase system where the solid 
matrix and the residual liquid exist. The understanding 
of the complex interactions between the flow of melt 
and the solidification is interesting and is of great 
importance since the transfer of heat and mass 
associated with the fluid flow has a profound influence 
on the process of solidification and becomes 
responsible for the chimney formation which causes 
imperfections in the resulting solid. The interesting 
phenomenon that occurs within the solidifying melt is 
the formation of chimneys which are narrow dendrite-
free cylindrical regions of zero solid fraction and are 
very much similar to the imperfections called „freckles‟ 
that appear in the casting of metallic alloys [2],[3]. The 
formation of chimneys during the solidification of a 
binary or a multicomponent alloy constitutes three 
stages viz., finger, plume and chimney convections 
[4],[5]. Actually, during the solidification process the 
solidification front or the interface between the solid and 
the liquid becomes highly dendritic due to the 
morphological instability. As a consequence there will 
be a formation of a region called „mushy layer‟ 
consisting of a partially solidified melt, the dendritic 
structure of which is quite complex [1]. Then the system 
becomes unstable due to the density gradient that 
results from the rejected materials and there will be a 
transition to convection. In other words, the transition to 
convection in the mushy layer drives the fluid flow into 
the regions with differential densities, which in turn 
becomes responsible for the solidification or dissolution 
of the solid matrix and eventually affects the material 
properties. Further, as a result of the interaction of the 
thermal fields and the generated convective motions, 
chimneys which are responsible for the imperfections in 
the resulting solid will be formed [2],[6],[7],[8],[9].The 

review article by [10] discusses the striking fluid-
mechanical events that take place during the 
solidification process. It is of importance and interest to 
study the resulting buoyancy driven convection in a 
mushy layer. A good knowledge about the onset of 
convection, dynamics of the mushy layer and the 
chimney convection is absolutely essential since they 
have significant applications in areas viz, geophysics 
for predicting brine fluxes from sea ice [11],[12], 
geology, industries Sea dynamics[13], metallurgy 
because of the heterogeneous nature of the material 
properties associated with the chimneys which lead to 
imperfections in metal castings[14] and also in the 
solidification process within the earths interior[15] 
Especially in metallurgy and dynamics of sea and 
geophysics, the mechanism and the process of 
formation of chimneys which spoil the quality, physical 
properties and the internal structure of the resulting 
solid, are important study areas [16],[17],[18]. In the 
past three decades the study pertaining to the 
development of different convective models and 
analysis for the case of convection in mushy layers has 
attracted researchers [18],[8]. The works connected 
with the formulation of the governing equations in the 
study of convection in mush layers, the development of 
mathematical models and also the solution procedure 
are available [19],[20]. The mathematical models 
describing the characteristics of mushy layer and the 
related phenomena are exclusively based on the key 
feature that the length scale of the internal boundaries 
are extremely small when compared to the macroscopic 
dimensions of the mushy layer. Linear and weakly 
nonlinear convective instabilities in a mushy layer have 
been studied by quite a number of researchers under 
different types of assumptions and approximations [21], 
[6], [22], [23], [24], [25], [27]. Quite a number of works 
on convective flow in a mushy layer is available. A 
detailed review on convection in mushy layers is given 
by [6], [27]. Recently, [28], [29], [30] have applied 
weakly nonlinear evolution approach to study two-
dimensional convective motions in a mushy layer with 
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impermeable solidification front under different 
situations.  Finally, [31] have studied numerically the 
effects of inertia on connection in a mushy layer with 
constant permeability. Analytically, [32], [33] have 
studied the effects of inertia on convection in a passive 
mushy layer. The main objective behind these studies 
is to study the history of the solidification process that 
could yield pure solid and facilitate the suppression of 
the freckles which have catastrophic effects on the 
internal structure of the resulting solid. A thorough 
survey of the literature pertaining to the subject reveals 
that no in depth analytical work is available for the case 
of convection in a mushy layer with and without 
constraints. Therefore, the present analytical work is 
carried out to study the effects of large Stefan number, 
Concentration ratio, gravity inclination and the 
permeability function on the total Rayleigh number, 
velocity and local solid fraction profiles in a mushy layer 
near eutectic temperature. The boundaries are 
assumed to be impervious so that the Darcy‟s equation 
is valid. The paper is organised as follows: Section 1, 
deals with a brief introduction to the study together with 
the literature survey. Section 2, discusses the 
mathematical formulation. In sections 3 and 4, the basic 
state, the linear stability and weakly nonlinear analyses 
are presented. Finally, section 5, presents the results 
and discussions of the study. 
 

2. MATHEMATICSL FORMULATION 
The model consists of a horizontal mushy layer formed 
during the solidification of a binary alloy as shown in 
figure 1. The process of uniform cooling from below of 
the system results in the upward advancement of the 
solid – mush and mush – liquid interface with a 
constant solidification speed V0. In other words the 
mushy layer is sandwiched between the solid and the 
liquid regions. The study is carried out in a moving 
frame of reference, 

 

 
 

Fig.1. The schematic diagram of the physical system 
 

where the bottom boundary of the mushy layer z = 0 is 
kept at the eutectic temperature T = TE ,  while the top 
boundary  z =  d  is kept at the liquidus temperature TL 

(C0 ) and the mixture of the composition C0  is supplied 
through the surface. The system is also subject to a 
gravity inclination where the vector g = (Sin α

*
 , -Sin α

*
 ,   

Cos α
*
 )  and α

*
 is the angle of inclination of the gravity 

vector to the vertical axis.Following are the 
assumptions made for the study: 

i. The top and the bottom boundaries of the mushy layer 
are assumed to be isothermal non-deformable and 
impermeable to the fluid flow, so that the mushy layer 
is kept dynamically isolated from the other 
components of the system [23]. 

ii. The solidification front (the frame of reference) is 
moving upwards with a velocity V0 relative to the solid 
formed and the solid dendrites within the mushy layer. 
This makes the basic state to be steady. 

iii. The temperature T and the composition C of the liquid 
in the mushy layer are required to satisfy a linear 

liquidus relationship T = TL(C) = TL(C0) +  (C – C0), 

where   is a constant. The liquid is assumed to be 

Newtonian with a linearized equation of state =  

[1 + (C- C0)] where    is the density of the 

liquid, is a reference density,  = 
*
–

,
*
and 

*
are constant expansion coefficients 

for heat and solute respectively. 
iv. First following [23], we study a limit in which the 

thickness of the mushy layer is much less than the 

diffusion length scale by letting   1. 

v. Secondly we assume that the compositional ratio is 

large by writing CR =  with CR = 0(1) as   0 which 

corresponds to the near eutectic approximation 
introduced by [34]. 

vi. we consider the limit in which the Stefan number is 

large[29] by taking S = S/   with S = O(1)  as  0 

which corresponds to the situation in which the latent 
heat  liberated during  the local phase change is much 
larger than the heat associated with the typical 
variations of temperature across the mushy layer. 
Note that the particular scaling allows the 
destabilisation of the system to an oscillatory mode of 
convection [25],[35]. However, that a key implication of 

the near-eutectic approximation(C = O(δ
−1

)) is that the 
solid fraction is small, and hence the permeability is 
uniform to the lowest order. As a consequence, we 
follow [23] and expand the permeability in terms of  the 
small solid fraction Φ, 

K (Φ)=1+ K1Φ + K2Φ
 2 

+ -----   (1) 
vii. where, on physical grounds, we demand that K1, K2, 

etc. are non-negative. Under the above assumptions 
and approximations the governing equations of the 
systems are Conservation of momentum, 
Conservation of mass, Conservation of heat and 
solute. These equations in the dimensionless form by 

using the scales viz.,  , ∆T, ,  ,  for  the 

variables velocity, temperature, time, pressure and 
length respectively, are : 

 

K(Φ)u= - RΘSinα
*    

(2a) 

K(Φ)v= +RΘSinα
*
    (2b) 

K(Φ)w= - RΘCosα
*   

 (2c) 
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∇. q


=0.      (3) 

(∂t−∂z)(θ−SΦ)+ q

∇θ=∇

2

θ,                         (4)  

(∂t − ∂z) ((1 − Φ) θ + C Φ)+ q


.
∇θ =0,   (5) 

Next we eliminate the pressure in the above set of 
equations by applying the following transformation: 
To start with, the application of the transformation 

 [  +  ]  -  ∇1
2
 (2c)   (6) 

yields 

∇ 
2
 (Kw) - (u .Δk) = R. Sinα

*
   

- R. Sin α
*

 – R.∇ 1
2  

Cosα
*  

 (6a) 

Next by applying the transformation, we get 

 [  +   ]   -  ∇1
2 
(2a)   (7)  

∇ 
2
 (Ku) - ( u . ΔK) = -R. Sinα

*
   

+ R. Cos α
*

 – R. ∇ 1
2 
Sinα

*  
 (7a) 

Finally by applying the transformation,  

[  + ]  -  ∇1
2 
(2b)    (8) 

we get, 

∇ 
2
 (Kv) -  ( u . ΔK) = R. Cosα

*
   

+ R. Sinα
*

 + R. ∇ 1
2 
Sinα

*
   (8a)      

The associated boundary conditions are  
Θ = −1,w = 0 @z = 0,  
θ = 0, w = 0, Φ = 0 @ z = δ.   (9)  
The above boundary conditions correspond to 
impermeable rigid boundaries of the mushy layer. The 
lower plate, between the solid and the mush, is 
maintained at the eutectic temperature TE , while the 
upper boundary between the liquid and the mush (that 
is, at zero solid fraction Φ), is maintained at the far-field 
liquidus temperature TL(C0).The porous medium is such 
that Darcy‟s law holds good. 
 
Dimensionless parameters are the key parameters in 
the study through which the qualitative as well as 
quantitative behaviour of the system could be 
effectively studied. The function K(Φ) appearing in 
equation (2) measures the variation of permeability with 
respect to some zero-solid-fraction permeability π(0), 
assumed to be finite, such that 

K(Φ) =      (10) 

The dimensionless parameters appearing in (2-5) 
are the Stefan number   

S=  

the concentration ratio C =   

the Rayleigh number R =  (Rayleigh number) 

and α
*
 is the inclination parameter             

      (11) 
  where 

 = 1- : Local solid fraction, – Local liquid fraction , P – 

Dynamic pressure, = : the permeability is a 

function of the local solid fraction , : Dynamic viscosity, t, 

T, k,  hl ,  are time, temperature, thermal diffusivity, 

specific heat, latent heat/unit mass, Cs: Composition of the 

solid phase ,C0: Composition of the liquid phase  , 0 :  

densities ,  g


 = (Sin α
*
 , -Sin α

*
 , Cos α

*
 )  acceleration due 

to gravity,  : The reference permeability, q


  = u i + vj 

+w k , , q


is the Darcy velocity vector and (u,v,w) are the 

horizontal and vertical components of ,q


 , i,  j ,k : unit 

vectors along the x, y and z axes .δ : the dimensionless 
thickness, β: Expansion coefficient, T∞: Far-field 
temperature, CE : Eutectic composition. A sixth 
dimensionless parameter, appearing in the study is the 
dimensionless mushy layer thickness δ = d/ (ƙV0) , appears 
in the boundary conditions. Before analysing the linear 
stability of the system the basic state analysis is carried out 
as follows: 
 

3. BASIC STATE ANALYSIS 
The steady motionless basic state system is considered 
here where each of the corresponding dependent 
variables is designated by a subscript “B”. The basic 
state variables are assumed to be functions of z only. 

Θ =  θB (z) + ε (x,y,z,t)  

Φ = ΦB(z)  + ε ̂ (x,y,z,t)  

q


 =  0 +  ε q̂ (x,y,z,t)  

P = PB (Z) + ε P(x,y,z,t) 
K=Kb(ΦB)+εK(Φ)    (12) 
where ε is the perturbation parameter(ε << 1) and the 
perturbed quantities can vary with respect to spatial and 
time variables. Using (12) in (13) we rescale the 
variables as  

(∂t–δ∂z) (θ -
S





Φ)+ δ ( q


·∇)θ = ∇
2 

θ,  (13) 

(∂t–δ∂z)((1-Φ)θ+
C


Φ)+δ( q


·∇)θ=0  (14) 

K(Φ)u= - RΘSinα
*   

(15a) 
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K(Φ)v= +RΘSinα
*   

(15b) 

K(Φ)w= - RΘCosα
*   

(15c) 

∇· q


= 0.     (16) 

Equations (13 -16) allow a motionless steady basic 
state solution, depending only on the vertical position. 

By setting q


=0 and ∂t = 0, we get 

−δDθB+ S


DΦB=∇
2

θB,   (17)    

−δDθB+δD(θB.ΦB)-C DθB=0   (18) 

0= -D PB + R ƟB Cosα
*   

(19) 
From (17-19), we have the following equations: 

δ D θB (ΦB -1) + δ DΦB (θB -  ) = 0 

δ(1-ΦB)DθB+DΦB(C –δθB)=0   (20) 

D
2
θB+δDθB-SDΦB     (21) 

DPB - R θB Cosα
*
 = 0    (22)  

Boundary conditions are 
θB = -1 @ z = 0, 
θB=0,ΦB=0@z=1    (23) 

On multiplying (22) by (C  - δ θB ) and (21) by S  and  

adding , we get 

(C  - δ θB) (D 
2
 θB+ δ D θB - S DΦB) + S  (C  (1- 

ΦB)DθB+(C -δθB)DΦB)=0   (24) 

Equations (21) - (24) are solved asymptotically by 
applying the following expansions 
 θB  = θ B 0 + δθB1+------------------ΦB = δ ΦB0  +δ

2
ΦB1+-----

----------                                   (25) 
On substituting (25) in (24) and on equating the like 
powers of δ

0
, δ and δ 

2 
we get, corresponding  basic 

state system(17) to (19) and the solutions are given by 
  
θB0=z-1,     (26) 

ƟB1=- (z
2
–z),    (27) 

θB2 = [ - ] + [   - ]+[1 -  + ]z-1  

(28) 

ΦB0= [z-1]     (29) 

ΦB1=- + (z-1)
2
C     (30) 

Finally by substituting (26) to (30) in (25), we get 

θB  =(z-1) –δ   (z
2
 – z )+δ 

2
 [ [ - ] + [  -

]+[1- +  ]z -1]+-    (31) 

ΦB = - δ  [z -1]+ δ 
2
[-  +   (z -1)

2
] +---------                                                          

(32) 
 

4. WEAKLY NONLINEAR ANALYSIS 
In this section we first perform the linear stability analysis of 
the system to find the critical conditions and the growth rate 
ζ and next consider a finite – amplitude perturbation 
expansion of the variables in order to predict the nonlinear 
effects on the system. For this purpose, we consider the 
expansions of the perturbation quantities in the form  
θ = (θ00  + δθ01 + ---------) + ε (θ10  + δθ11 + -----------) + ε

2
 

(θ20  + δθ21 + ----- ---) 
ΩΦ =  ( Φ00  + δ  Φ01 + -----) + ε( Φ10  + δ  Φ11 + -----) + ε

2
 

( Φ2(-1)  + δ Φ20 + --------) 

q


= ( q


00 + δ q


01 + ---------) + ε ( q


10 + δ q


11+ ---------) + 

ε
2
( q


20 + δ q


21 +  -----) 

R = (R00 +  δ R01 +--------) + ε (R10 +  δ R11+--------

)+ε
2
((R20+δR21+----)                    (33) 

 
From (33) it is observed that the equation is singular at the 

order of as δ > 0. In fact this is the contribution of the 

forcing term Φ00 from the equation for Φ at the order of
2
. 

Therefore the balance is made by adding the term (1/δ) Φ2  - 

(1) at order of
2
. 

Further, the asymptotic expansion of (33) is meaningful only 

when 
2
δ is very much less than 1. In order to study the 

stability characteristics of the problem, we substitute (33) 
into (3), (4), (6a) ,(7a) and (8a) and collecting the terms of 
order δ

-1
 and δ

0
, we get the following set of differential 

equations: 

00 = 0     (34) 

S( 01-D)Φ00-R00w00+∇
2
θ00=0   (35) 

( 01-D)CΦ00+R00W00= 0   (36) 

∇2
w00=ikR00Sinα

*
Dθ00-R00Cosα

*∇1
2
θ00  (37) 

∇2
u00=ikR00Cosα

*
Dθ00-∇1

2
R00Sinα

*
θ00  (38) 

The set of differential equations (34) to(38) is solved along 
with the boundary conditions by letting  
Ѳ00=-fkSin(πz)    (39) 

w00=    (40) 

      (41) 
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R00=     (42) 

Φ 00 =  [  + Cos 

( )]     (43) 

Next we consider the system of o(δ) :  

    ∇2
01 - R00 (w01 + w00D ) -R01 w00 + D  – S.D = 

0                                                    (44) 

D -– w01-  (R00w00D  + R01w00 ) 

 + D -D = 0   (45) 

∇  
2
 w01 + k1. ∇  

2 
(ΦB0.W00) = R00. Sinα

*
.  + R01. 

Sinα
*
.  - R00. Sinα.  - R01. 

Sinα
*
. +R00.k

2
Cosα

*
. +R01.k

2
 Cosα

*
.  + 

K1D ( D(ΦB0.W00))    (46) 

∇  
2
 (u01 + k1. ΦB0.u00) - [w00. k1. ΦB0] 

 = - R00. Sinα
*
 .  – R01. Sinα

*
   

+ R00. Cosα
*
 .  + R01 Cosα

*
  

 -∇ 1 
2
.R00. Sinα

*
  - ∇  

2
 R01.      Sinα

*
  (47) 

In (47) to (49), we eliminate W01 and  so that 

(D
2 

– α
2
)
2
  + R00 Ω { K1 (D

2 
– α 

2
)( ) - K1 

D(D ) – Cosα
*
α

2 
(R00  + R01  ) –ik Sin α

* 

(R00  + R01  ) - (D
2 

– α 
2
 ) D } – Ω { R01 

(D
2 

– α 
2
) w00 + (D

2 
– α 

2
) D } -  (D

2 
– α 

2
 ) D  

= 0      (48) 

Multiplying the above equation by  00 and applying the 

solvability and orthogonality property, we obtain: 

 R00
2
=     (49) 

where  

              Ω = 1 +       

On Substituting for R00 and simplifying we get, 

R00 = (  )    (50) 

          R01 = [  - ] R00  

     => R01 = [  - ] (  ) (51) 

         Hence , 

      R01 = [  – S π] (52) 

   Further, from R = R00 +  RO1 we can write  

       RC  = [1 +  (  -  )] (53a)           

    and for αc = π 

        RC  = [1 +  (  -  ) ]  (53b) 

 

5. RESULTS AND DISCUSSION 
Marginal stability curves are presented in figures 2-4, where 
the graphs of total R vs α for the experimental values [35], δ 
= 0.1, 0.3, 0.6; S = 3.2, C = 9 , K1 = 0.2, Ω  = 1.35556 are 
plotted respectively. 

     

 
 

Fig. 2.  Total R For δ = 0.1 
 

 
 

Fig. 3.  Total R For δ = 0.3 K ≠ π 
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Fig. 4.  Total R For δ = 0.6 K ≠ π 
 

 
 

Fig. 5.  Total R for K = π, S < C 
 

The following observations are made: (i) The critical wave 
number decreases as δ increases i.e., αc = 3.1416 for δ = 
0.1 and αc = 3 for δ = 0.3 and 0.6 (ii) The effect of 
inclination on convection in a mushy layer is that for a 
particular wave number there is a drastic increase in the 
value of R (iii) but, the value of R decreases as δ increases. 
In other words the enhancement in the values of R for large 
inclination suggests that inclination facilitates the non-
formation of freckles in the resulting crystal during the 
solidification process. In fig. 5, the graph of R vs α* is 
presented for Ω = 0.2, 0.4, 0.6 and S/C < Ω respectively. 
The figure suggests that for a particular angle of inclination, 
the increase in the value of Ω from 0.2 to 0.6 drastically 
reduces the value of R. But, for a particular value of Ω the 
increase in α* from 20 to 60, drastically increases the value 
of R. Thus, it is observed that the system gets more 
stabilized as α* increases irrespective of the value of Ω. 
Further it is found that there is a slight enhancement in the 
values of R for S/C > Ω when compared to those of S/C < 
Ω. 

 

CONCLUSION:  
The present analytical study concentrates in predicting the 
effect of gravity inclination on convection in a mushy layer 
formed during the solidification process of a binary or 
multicomponent alloy. The study is based on a near eutectic 
temperature approximation and large far-field temperature. A 
modified perturbation technique is employed and the 

solutions corresponding to the basic, first and second order 
systems are determined. Marginal stability curves are 
presented for the experimental values [36] of Stefan number, 
Concentration ratio and the inclination parameter. Some of 
the important results are : (i) The mushy layer thickness has 
its significant influence in predicting the critical wave number 
with regard to total R (ii) There is an increase in the value of 
total R for a particular value of α and Ω in both the cases ( 
S/C < Ω and S/C > Ω ). But Ω has a destabilizing effect on 
the system, therefore it is concluded that by the proper 
choice of the angle of inclination the chimney convection 
could be inhibited to a great extent by employing the present 
analytical technique so that the resulting solid would be free 
from freckles. Our results are in excellent agreement with 
those of [33],[37] 
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