
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4                       76 
ISSN 2347-4289 

Copyright © 2014 IJTEEE. 
 

Artificial Neural Network Models For Software 
Effort Estimation 
 
P.Subitsha, J.Kowski Rajan 
 
(M.E. Student in Applied Electronics ) Department of Electronics and Communication Engineering, Loyola Institute of Technolo-
gy & Science, Thovalai, Kanyakumari, India; 

2
(Assistant Professor) Department of Electronics and Communication Engineering, 

Loyola Institute of Technology & Science, Thovalai, Kanyakumari, India. 
Email: subitsha113@yahoo.com, kowski234762@gmail.com. 
 
ABSTRACT: Software estimation accuracy is one of the greatest challenges for software developers. Software cost and time estimation supports the 
planning and tracking of software projects. The present paper is directed to design a model which should be accurate and comprehensible in order to 
inspire confidence in a business setting. Software effort estimation models which adopt a neural network technique provide a solution to improve the 
accuracy. However, no univocal conclusion to which technique is the most suited has been reached. This study addresses this issue by reporting on the 
results of a large scale benchmarking study. Different types of techniques are under consideration including techniques such as Multilayered Perceptron 
Network, Radial Basis Function Neural Network, Support Vector Machines, Extreme Learning Machines and Particle Swarp Optimization. Studies are 
made using COCOMO II data. Results are provided for MMRE and PRED (25) accuracy measures. 
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1 INTRODUCTION 
Software cost estimation is the process of predicting the effort 
required to develop a software system. Many estimation mod-
els have been proposed over the last 30 years. In recent 
years, computing power has become a subordinate resource 
for software developing companies as it doubles approximate-
ly every 18 months, hereby costing only a fraction compared 
to the late 60’s. Personnel costs are however still an important 
expense in the budget of software developing companies. In 
light of this observation, proper planning of personnel effort is 
a key aspect for these companies. Software community has 
developed unique tools and techniques such as size, effort, 
and cost estimation techniques and tools to address chal-
lenges facing the management of software development 
projects [1][2][3]. These tools and techniques are utilized for 
software development phases starting with the software re-
quirements specification. As demand for software applications 
increases continually and the software scope & complexity 
become higher than ever, the software companies are in real 
need of accurate estimates of the project under development. 
Indeed, good software effort estimates are critical to both 
companies and clients. There are several methods available 
to estimate the cost required to develop software. Each has its 
own strengths and weaknesses. A major hurdle in software 
cost estimation is the unavailability of data at the starting time 
of the project. A key factor in selecting a cost estimation model 
is the accuracy of its estimates. Unfortunately, despite the 
large body of experience with estimation models, the accuracy 
of these models is not satisfactory. Also, from a comprehensi-
bility point of view, a more concise model (i.e. a model with 
less input) is preferred. In this paper, five techniques 
representing artificial neural network models are investigated. 
It includes Multi Layered Perceptron (MLP) Neural network, 
Radial Basis Function (RBF) network, Support Vector Ma-
chines(SVM), Particle-Swarm Optimization in SVM (PSO-
SVM) and Extreme learning Machines. 
 

2 METHODOLOGY 
In this research, the Cocomo model (Constructive Cost Mod-
el) has been used for the experimentation purposes. It is an 
algorithmic software cost estimation model developed by Barry 
Boehm. The model uses a basic regression formula, with pa-

rameters that are derived from historical project data and cur-
rent project characteristics. The effort estimation process is 
done in six phases: Data preprocessing, Technique setup, In-
put selection, Evaluation criteria and testing. All these models 
were trained with first 2/3 inputs from the standard dataset and 
later 1/3 inputs from the same dataset were used to test the 
models. Finally a comparative analysis was carried out based 
on the standard assessment criterions MMRE and Pred (25). 

 

3 TECHNIQUES 
As mentioned in Section I, different techniques have been 
applied to the field of software effort estimation. As the aim of 
the study is to assess which data mining techniques perform 
best to estimate software effort, the following techniques are 
considered 

1
. These techniques were selected as their use 

has previously been illustrated in the domain of software effort 
prediction and/or promising results were obtained in other 
regression contexts. Computational cost was also taken into 
consideration in selecting the techniques eliminating tech-
niques characterized by high computational loads. 
 

1 The techniques are implemented in Matlab. 
MLP: Neural networks (NNs) are a non-linear modeling tech-
nique inspired by the functioning of the human brain [4]–[6] 
and have previously been applied in the context of software 
effort estimation [7], [8], [9]. We further discuss Multi Layered 
Perceptrons (MLPs) which are the most commonly used type 
of NNs that are based upon a network of neurons arranged in 
an input layer, one or more hidden layers, and an output layer 
in a strictly feedforward manner. Each neuron processes its 
inputs and generates one output value via a transfer function, 
which is transmitted to the neurons in the subsequent layer. 
The output of hidden neuron i is computed by processing the 
weighted inputs and its bias term bi as follows:   

     

   hi = f   

      
W is  the weight matrix whereby Wij denotes the weight 
connecting input j to hidden unit i. In an analogous way, the 
output of the output layer is computed as follows: 
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   z = f     

       
with nh the number of hidden neurons and v the weight vector, 
whereby vj represents the weight connecting hidden unit j to 
the output neuron. The bias term has a similar role as the in-
tercept in regression. MLP neural networks with one hidden 
layer are universal approximators, able to approximate any 
continuous function [10]. Therefore in this study, a MLP with 
one hidden layer was implemented. The network weights W 
and v are trained with the algorithm of Levenberg–Marquardt 
[11]. In the hidden layer, a log sigmoid transfer function has 
been used, while in the output layer a linear transfer function is 
applied. The topology of the neural network is adjusted during 
training to better reflect specific data sets. 
 
RBFN: Radial Basis Function Networks (RBFN) are a special 
case of artificial neural networks, rooted in the idea of biologi-
cal receptive fields [12]. A RBFN is a three-layer feed- forward 
network consisting of an input layer, a hidden layer typically 
containing multiple neurons with radial symmetric gaussian 
transfer functions and a linear output layer. Due to the conti-
nuous target, a special type of RBFN is used, called Genera-
lized Regression Neural Networks [13]. Within such networks, 
the hidden layer contains a single neuron for each input sam-
ple presented to the algorithm during training. The output of 
the hidden units is calculated by a radial symmetric gaussian 
transfer function, radbas(xi ): 
 

  radbas(xi) =  

         
where xk is the position of the kth observation in the input 
space, ||.|| the Euclidian distance between two points, and b 
a bias term. Hence, each kth neuron has its own recep-
tive field in the input domain; a region centered on xk with 
size proportional to the bias term, b. The final effort estimates 
are obtained by multiplying the output of the hidden units 
with the vector consisting of the targets associated with the 
cluster centroids ck , and then inputting this result into a linear 
transfer function. The applicability of RBFN has recently been 
illustrated within the domain of software effort estimation 
[14], [15]. 

 
SVM: Support Vector Machines (SVM) is a non-linear ma-
chine learning technique based on recent advances in statis- 
tical learning theory [16]. SVMs have recently become a pop- 
ular machine learning technique suited both for classification 
and regression. A key characteristic of SVM is the mapping 
of the input space to a higher dimensional feature space. This 
mapping allows for an easier construction of linear regression 
functions. A kernel function is applied which will compute the 
dot product in the higher dimensional feature space by using 
the original attribute set.  

      

  k (x, y) =  

 
In this study, a Radial Basis Function (RBF) kernel was used 
since it was previously found to be a good choice in case of 
LS-SVMs [17]. SVMs are a popular technique which has been 
applied in various domains. Since this is a rather recent ma-
chine learning technique, its suitability in the domain of soft-
ware effort estimation has only been studied to a limited 
extent [18]. 

 
ELM: In general, the learning rate of feed-forward neural net- 
works (FFNN) is time-consuming than required. Due to this 
property, FFNN is becoming bottleneck in their applications 
limiting the scalability of them. According to [19], there are two 
main reasons behind this behavior, one is slow gradient based 
learning algorithms used to train neural network (NN) and the 
other is the iterative tuning of the parameters of the networks by 
these learning algorithms. To overcome these problems, 
[20][19] proposes a learning algorithm called ex- treme learning 
machine (ELM) for single hidden layer feed- forward neural 
networks (SLFNs) which randomly selected the input weights 
and analytically determines the output weights of SLFNs. It is 
stated that “In theory, this algorithm tends to provide the best 
generalization performance at ex- tremely fast learning speed” 
[19]. This is extremely good as in the past, it seems that there 
exists an unbreakable virtual speed barrier which classic learn-
ing algorithms cannot go break through and therefore feed-
forward network implementing them take a very long time to 
train itself, independent of the application type whether simple 
or complex. Also ELM tends to reach the minimum training error 
as well as it considers magnitude of weights which is opposite 
to the classic gradient-based learning algorithms which only 
intend to reach minimum training error but do not consider the 
magnitude of weights.Also unlike the classic gradient-based 
learning algorithms which only work for differentiable func-
tions.ELM learning algorithm can be used to train SLFNs with 
non- differentiable activation functions. According to [19], “Un-
like the traditional classic gradient-based learning algorithms 
facing several issues like local minimum, improper learning rate 
and over-fitting, etc, the ELM tends to reach the solutions 
straightforward without such trivial issues”. The learning speed 
of ELM is extremely fast. The ELM has better generalization 
performance than the gradient-based learning such as back 
propagation in most cases. 
 
PSO: The Particle swarm optimization (PSO) algorithm was 
first introduced by Eberhart and Kennedy [21], it is motivated 
from the simulation of social behavior. It was developed by the 
authors comprises a very simple concept, and paradigms can 
be implemented in a few lines of computer code. It requires 
only PRIMITIVE mathematical operators, and is computational-
ly inexpensive in terms of both memory requirements and 
speed. Early testing has found the implementation to be effec-
tive with several kinds of problems [22]. Particle represents a 
potential problem solution move through a � -dimensional 
search space. Each particle � represents a candidate position, 
and they remembered the best value and the current position 
which had resulted in that value. The value was called pbest. 
When a particle takes the entire population as its topological 
neighbors, the best value is a global best and is called gbest. 
All particles can share information about the search space.  Un-
like in genetic algorithms, evolutionary programming, and evo-
lution strategies, in PSO, the selection operation not performed. 
All particles in PSO are kept as members of the population 
through the course run. It is the velocity of the particle which is 
updated according to its own previous best position and the 
previous best position of it companions. The particles fly with 
the updated velocities. PSO is the only evolutionary algorithm 
that does not implement survival of the fittest [23].  
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4 EVALUATION CRITERIA 
A key question to any estimation method is whether the predic-
tions are accurate; the difference between the actual effort ei 
and the predicted effort ei’ should be as small as possible. 
Larger deviations will have a significant impact on the cost re-
lated to the development of the software project. . A criterion 
often used in the literature on cost estimation models is the 
Magnitude of Relative Error (MRE) [24] and probability of a 
project having a relative error of less than are equal to 0.25 
The magnitude of relative error (MRE) is defined as follows: 
 

  
 
The MRE value is calculated for each observation I whose effort 
is predicted. The aggregation of MRE over multiple observa-
tions (N) can be achieved through the mean MMRE as follows: 
       

    

 

For analysis of results the results is compared in a different 
way than given in Experimentation. Hence the network ma-
nually adjust the weights fifty runs are made and the average 
value is taken and the maximum as well as minimum value is 
also given in results. A complementary accuracy measure is 
PredL, the fraction of observations for which the predicted ef-
fort, ˆei, falls within L% of the actual effort, ei:Typically the 
Pred25 measure is considered, looking at the percentage of 
predictions that are within 25% of the actual values. The 
Pred25 can take a value between 0 and 100% while the 
MdMRE can take any positive value. 
 

5 EXPERIMENTAL RESULTS 
For experimentation in neural network there are two variables 
one is number of hidden layer neurons and another one is 
weight of the network. For analyzing the performance of the 
network any one of the variable to be fixed. This experimenta-
tion is to set the number of hidden layer neurons. 
 
Table 1 gives the change in number of hidden neurons for 
MLP. 

 
TABLE 1 

VARIATION OF HIDDEN NEURON FOR MLP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 gives the change in number of hidden neurons for 
RBF. 
 

TABLE 2 
VARIATION OF HIDDEN NEURON FOR RBF 

 

Data set MMRE MMRE1 PRE PRE1 

2 hidden 
neuron 

0.1706 0.2913 72.043 50.7937 

4 hidden 
neuron 

0.1381 0.2977 83.87 46.03 

6 hidden 
neuron 

0.1312 0.299 83.87 44.45 

8 hidden 
neuron 

0.1262 0.2964 88.172 46.03 

10 hidden 
neuron 

0.1227 0.2940 88.188 47.6190 

 
Support Vector Regression changes the parameter C. 
(C=10, 100, 150). Then calculate the value for MMRE and 
PRE. Both for Training and Testing. 
 
Table 3 shows the values of MMRE and PRE for various 
values of C. 
 

TABLE 3 
VARIATION OF PARAMETER C FOR SVR 

 

Data set MMRE MMRE1 PRE PRE1 

SVR for 
(C=10) 

0.1362 0.1780 84.94 74.603 

SVR for 
(C=100) 

0.1050 0.1441 93.54 85.714 

SVR for 
(C=150) 

0.1120 0.2880 93.54 66.66 

 
Following Table 4 gives the comparison of various neural 
network models based on the standard evaluation criterions. 
 

TABLE 4 
COMPARISON OF NEURAL NETWORK MODELS 

 

Model 

Data set 

MMRE PRE (25) 

Training Testing Training Testing 

MLP 0.1401 0.3057 91.720 42.857 

RBF 0.1227 0.2940 88.172 47.619 

SVM 0.1625 0.2015 94.127 85.562 

ELM 0.1925 0.2412 68.817 57.142 

PSOSVM 0.0368 0.1543 63.440 93.650 

 
On comparing Multi Layer Preceptron, Radial Basis Function, 
Extreme Learning Machine, Support Vector Machine, and 
PSO in SVM, very good results are obtained at PSO in SVM 

Data set MMRE MMRE1 PRE PRE1 

2 hidden 
neuron 

0.099 0.3519 91.39 52.381 

4 hidden 
neuron 

0.024 0.3229 97.84 44.43 

6 hidden 
neuron 

0.016 0.7909 98.92 44.54 

8 hidden 
neuron 

0.0164 0.2935 98.93 47.14 

10 hidden 
neuron 

0.0168 2.053 98.99 38.09 
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.PSO in svm has very low MMRE error value and is a very 
good optimization technique. 
 

6 CONCLUSION 
The results of this benchmarking study partially confirm the 
results of previous studies . Simple, understandable tech-
niques like OLS with log transformation of attributes and 
target, perform as good as (or better than) non-linear tech-
niques. Additionally, a formal model such as Cocomo per-
formed at least equally good as OLS with log transformation 
on the Coc81 and Cocnasa data sets. These two data sets 
were collected with the Cocomo model in mind. However, 
this model requires a specific set of attributes and cannot 
be applied on data sets that do not comply with this re-
quirement. Although the performance differences can be 
small in absolute terms, a minor difference in estimation 
performance can cause more frequent and larger project 
cost overruns during software development. Hence, even 
small differences can be important from a cost and opera-
tional perspective .Another conclusion is that the selection 
of a proper estimation technique can have a significant im-
pact on the performance. A simple technique like regression 
is found to be well suited for software effort estimation 
which is particularly interesting as it is a well documented 
technique with a number of interesting qualities like statis-
tical significance testing of parameters and stepwise analy-
sis. This conclusion is valid with respect to the different me-
trics that are used to evaluate the techniques. Furthermore, 
it is shown that typically a significant performance increase 
can be expected by constructing software effort estimation 
models with a limited set of highly predictive attributes. 
Hence, it is advised to focus on data quality rather than col-
lecting as much predictive attributes as possible. Attributes 
related to the size of a software project, to the development, 
and environment characteristics, are considered to be the 
most important types of attributes. 
 

7 FUTURE RESEARCH 
This study indicates that different data preprocessing steps, 
addressing possible data quality issues such as discretiza-
tion algorithms, missing value handling schemas, and scal-
ing of attributes, can play an important role in software effort 
estimation. While the same data preprocessing steps were 
applied on all data sets, the results of the input selection 
indicate that preprocessing steps such as attribute selection 
can be important. A thorough assessment of all possible 
data preprocessing steps seems however computationally 
infeasible when considering a large number of techniques 
and data sets. The impact of various preprocessing tech-
niques has already been investigated to a limited extent, 
but further research into this aspect could provide important 
insights. This work can be extended using Genetic Algo-
rithm, optimization can be applied to get the result for all 
methods. Also, considering the typical limited number of 
observations and the importance of expert knowledge (i.e. 
contextual information) for software effort estimation, we 
believe the inclusion of such expert knowledge to be a 
promising topic for future research. Now, this topic has been 
investigated only to a limited extent in software effort esti-
mation. Future research could be done into these aspects 
by especially considering the impact such estimations can 
have on the budgeting and remuneration of staff. 
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