
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4 76
ISSN 2347-4289

Copyright © 2014 IJTEEE.

Artificial Neural Network Models For Software
Effort Estimation

P.Subitsha, J.Kowski Rajan

(M.E. Student in Applied Electronics) Department of Electronics and Communication Engineering, Loyola Institute of Technolo-
gy & Science, Thovalai, Kanyakumari, India;

2
(Assistant Professor) Department of Electronics and Communication Engineering,

Loyola Institute of Technology & Science, Thovalai, Kanyakumari, India.
Email: subitsha113@yahoo.com, kowski234762@gmail.com.

ABSTRACT: Software estimation accuracy is one of the greatest challenges for software developers. Software cost and time estimation supports the
planning and tracking of software projects. The present paper is directed to design a model which should be accurate and comprehensible in order to
inspire confidence in a business setting. Software effort estimation models which adopt a neural network technique provide a solution to improve the
accuracy. However, no univocal conclusion to which technique is the most suited has been reached. This study addresses this issue by reporting on the
results of a large scale benchmarking study. Different types of techniques are under consideration including techniques such as Multilayered Perceptron
Network, Radial Basis Function Neural Network, Support Vector Machines, Extreme Learning Machines and Particle Swarp Optimization. Studies are
made using COCOMO II data. Results are provided for MMRE and PRED (25) accuracy measures.

Keywords : Artificial neural network, Cocomo

1 INTRODUCTION
Software cost estimation is the process of predicting the effort
required to develop a software system. Many estimation mod-
els have been proposed over the last 30 years. In recent
years, computing power has become a subordinate resource
for software developing companies as it doubles approximate-
ly every 18 months, hereby costing only a fraction compared
to the late 60’s. Personnel costs are however still an important
expense in the budget of software developing companies. In
light of this observation, proper planning of personnel effort is
a key aspect for these companies. Software community has
developed unique tools and techniques such as size, effort,
and cost estimation techniques and tools to address chal-
lenges facing the management of software development
projects [1][2][3]. These tools and techniques are utilized for
software development phases starting with the software re-
quirements specification. As demand for software applications
increases continually and the software scope & complexity
become higher than ever, the software companies are in real
need of accurate estimates of the project under development.
Indeed, good software effort estimates are critical to both
companies and clients. There are several methods available
to estimate the cost required to develop software. Each has its
own strengths and weaknesses. A major hurdle in software
cost estimation is the unavailability of data at the starting time
of the project. A key factor in selecting a cost estimation model
is the accuracy of its estimates. Unfortunately, despite the
large body of experience with estimation models, the accuracy
of these models is not satisfactory. Also, from a comprehensi-
bility point of view, a more concise model (i.e. a model with
less input) is preferred. In this paper, five techniques
representing artificial neural network models are investigated.
It includes Multi Layered Perceptron (MLP) Neural network,
Radial Basis Function (RBF) network, Support Vector Ma-
chines(SVM), Particle-Swarm Optimization in SVM (PSO-
SVM) and Extreme learning Machines.

2 METHODOLOGY
In this research, the Cocomo model (Constructive Cost Mod-
el) has been used for the experimentation purposes. It is an
algorithmic software cost estimation model developed by Barry
Boehm. The model uses a basic regression formula, with pa-

rameters that are derived from historical project data and cur-
rent project characteristics. The effort estimation process is
done in six phases: Data preprocessing, Technique setup, In-
put selection, Evaluation criteria and testing. All these models
were trained with first 2/3 inputs from the standard dataset and
later 1/3 inputs from the same dataset were used to test the
models. Finally a comparative analysis was carried out based
on the standard assessment criterions MMRE and Pred (25).

3 TECHNIQUES
As mentioned in Section I, different techniques have been
applied to the field of software effort estimation. As the aim of
the study is to assess which data mining techniques perform
best to estimate software effort, the following techniques are
considered

1
. These techniques were selected as their use

has previously been illustrated in the domain of software effort
prediction and/or promising results were obtained in other
regression contexts. Computational cost was also taken into
consideration in selecting the techniques eliminating tech-
niques characterized by high computational loads.

1 The techniques are implemented in Matlab.
MLP: Neural networks (NNs) are a non-linear modeling tech-
nique inspired by the functioning of the human brain [4]–[6]
and have previously been applied in the context of software
effort estimation [7], [8], [9]. We further discuss Multi Layered
Perceptrons (MLPs) which are the most commonly used type
of NNs that are based upon a network of neurons arranged in
an input layer, one or more hidden layers, and an output layer
in a strictly feedforward manner. Each neuron processes its
inputs and generates one output value via a transfer function,
which is transmitted to the neurons in the subsequent layer.
The output of hidden neuron i is computed by processing the
weighted inputs and its bias term bi as follows:

 hi = f

W is the weight matrix whereby Wij denotes the weight
connecting input j to hidden unit i. In an analogous way, the
output of the output layer is computed as follows:

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4 77
ISSN 2347-4289

Copyright © 2014 IJTEEE.

 z = f

with nh the number of hidden neurons and v the weight vector,
whereby vj represents the weight connecting hidden unit j to
the output neuron. The bias term has a similar role as the in-
tercept in regression. MLP neural networks with one hidden
layer are universal approximators, able to approximate any
continuous function [10]. Therefore in this study, a MLP with
one hidden layer was implemented. The network weights W
and v are trained with the algorithm of Levenberg–Marquardt
[11]. In the hidden layer, a log sigmoid transfer function has
been used, while in the output layer a linear transfer function is
applied. The topology of the neural network is adjusted during
training to better reflect specific data sets.

RBFN: Radial Basis Function Networks (RBFN) are a special
case of artificial neural networks, rooted in the idea of biologi-
cal receptive fields [12]. A RBFN is a three-layer feed- forward
network consisting of an input layer, a hidden layer typically
containing multiple neurons with radial symmetric gaussian
transfer functions and a linear output layer. Due to the conti-
nuous target, a special type of RBFN is used, called Genera-
lized Regression Neural Networks [13]. Within such networks,
the hidden layer contains a single neuron for each input sam-
ple presented to the algorithm during training. The output of
the hidden units is calculated by a radial symmetric gaussian
transfer function, radbas(xi):

 radbas(xi) =

where xk is the position of the kth observation in the input
space, ||.|| the Euclidian distance between two points, and b
a bias term. Hence, each kth neuron has its own recep-
tive field in the input domain; a region centered on xk with
size proportional to the bias term, b. The final effort estimates
are obtained by multiplying the output of the hidden units
with the vector consisting of the targets associated with the
cluster centroids ck , and then inputting this result into a linear
transfer function. The applicability of RBFN has recently been
illustrated within the domain of software effort estimation
[14], [15].

SVM: Support Vector Machines (SVM) is a non-linear ma-
chine learning technique based on recent advances in statis-
tical learning theory [16]. SVMs have recently become a pop-
ular machine learning technique suited both for classification
and regression. A key characteristic of SVM is the mapping
of the input space to a higher dimensional feature space. This
mapping allows for an easier construction of linear regression
functions. A kernel function is applied which will compute the
dot product in the higher dimensional feature space by using
the original attribute set.

 k (x, y) =

In this study, a Radial Basis Function (RBF) kernel was used
since it was previously found to be a good choice in case of
LS-SVMs [17]. SVMs are a popular technique which has been
applied in various domains. Since this is a rather recent ma-
chine learning technique, its suitability in the domain of soft-
ware effort estimation has only been studied to a limited
extent [18].

ELM: In general, the learning rate of feed-forward neural net-
works (FFNN) is time-consuming than required. Due to this
property, FFNN is becoming bottleneck in their applications
limiting the scalability of them. According to [19], there are two
main reasons behind this behavior, one is slow gradient based
learning algorithms used to train neural network (NN) and the
other is the iterative tuning of the parameters of the networks by
these learning algorithms. To overcome these problems,
[20][19] proposes a learning algorithm called ex- treme learning
machine (ELM) for single hidden layer feed- forward neural
networks (SLFNs) which randomly selected the input weights
and analytically determines the output weights of SLFNs. It is
stated that “In theory, this algorithm tends to provide the best
generalization performance at ex- tremely fast learning speed”
[19]. This is extremely good as in the past, it seems that there
exists an unbreakable virtual speed barrier which classic learn-
ing algorithms cannot go break through and therefore feed-
forward network implementing them take a very long time to
train itself, independent of the application type whether simple
or complex. Also ELM tends to reach the minimum training error
as well as it considers magnitude of weights which is opposite
to the classic gradient-based learning algorithms which only
intend to reach minimum training error but do not consider the
magnitude of weights.Also unlike the classic gradient-based
learning algorithms which only work for differentiable func-
tions.ELM learning algorithm can be used to train SLFNs with
non- differentiable activation functions. According to [19], “Un-
like the traditional classic gradient-based learning algorithms
facing several issues like local minimum, improper learning rate
and over-fitting, etc, the ELM tends to reach the solutions
straightforward without such trivial issues”. The learning speed
of ELM is extremely fast. The ELM has better generalization
performance than the gradient-based learning such as back
propagation in most cases.

PSO: The Particle swarm optimization (PSO) algorithm was
first introduced by Eberhart and Kennedy [21], it is motivated
from the simulation of social behavior. It was developed by the
authors comprises a very simple concept, and paradigms can
be implemented in a few lines of computer code. It requires
only PRIMITIVE mathematical operators, and is computational-
ly inexpensive in terms of both memory requirements and
speed. Early testing has found the implementation to be effec-
tive with several kinds of problems [22]. Particle represents a
potential problem solution move through a � -dimensional
search space. Each particle � represents a candidate position,
and they remembered the best value and the current position
which had resulted in that value. The value was called pbest.
When a particle takes the entire population as its topological
neighbors, the best value is a global best and is called gbest.
All particles can share information about the search space. Un-
like in genetic algorithms, evolutionary programming, and evo-
lution strategies, in PSO, the selection operation not performed.
All particles in PSO are kept as members of the population
through the course run. It is the velocity of the particle which is
updated according to its own previous best position and the
previous best position of it companions. The particles fly with
the updated velocities. PSO is the only evolutionary algorithm
that does not implement survival of the fittest [23].

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4 78
ISSN 2347-4289

Copyright © 2014 IJTEEE.

4 EVALUATION CRITERIA
A key question to any estimation method is whether the predic-
tions are accurate; the difference between the actual effort ei
and the predicted effort ei’ should be as small as possible.
Larger deviations will have a significant impact on the cost re-
lated to the development of the software project. . A criterion
often used in the literature on cost estimation models is the
Magnitude of Relative Error (MRE) [24] and probability of a
project having a relative error of less than are equal to 0.25
The magnitude of relative error (MRE) is defined as follows:

The MRE value is calculated for each observation I whose effort
is predicted. The aggregation of MRE over multiple observa-
tions (N) can be achieved through the mean MMRE as follows:

For analysis of results the results is compared in a different
way than given in Experimentation. Hence the network ma-
nually adjust the weights fifty runs are made and the average
value is taken and the maximum as well as minimum value is
also given in results. A complementary accuracy measure is
PredL, the fraction of observations for which the predicted ef-
fort, ˆei, falls within L% of the actual effort, ei:Typically the
Pred25 measure is considered, looking at the percentage of
predictions that are within 25% of the actual values. The
Pred25 can take a value between 0 and 100% while the
MdMRE can take any positive value.

5 EXPERIMENTAL RESULTS
For experimentation in neural network there are two variables
one is number of hidden layer neurons and another one is
weight of the network. For analyzing the performance of the
network any one of the variable to be fixed. This experimenta-
tion is to set the number of hidden layer neurons.

Table 1 gives the change in number of hidden neurons for
MLP.

TABLE 1

VARIATION OF HIDDEN NEURON FOR MLP

Table 2 gives the change in number of hidden neurons for
RBF.

TABLE 2
VARIATION OF HIDDEN NEURON FOR RBF

Data set MMRE MMRE1 PRE PRE1

2 hidden
neuron

0.1706 0.2913 72.043 50.7937

4 hidden
neuron

0.1381 0.2977 83.87 46.03

6 hidden
neuron

0.1312 0.299 83.87 44.45

8 hidden
neuron

0.1262 0.2964 88.172 46.03

10 hidden
neuron

0.1227 0.2940 88.188 47.6190

Support Vector Regression changes the parameter C.
(C=10, 100, 150). Then calculate the value for MMRE and
PRE. Both for Training and Testing.

Table 3 shows the values of MMRE and PRE for various
values of C.

TABLE 3
VARIATION OF PARAMETER C FOR SVR

Data set MMRE MMRE1 PRE PRE1

SVR for
(C=10)

0.1362 0.1780 84.94 74.603

SVR for
(C=100)

0.1050 0.1441 93.54 85.714

SVR for
(C=150)

0.1120 0.2880 93.54 66.66

Following Table 4 gives the comparison of various neural
network models based on the standard evaluation criterions.

TABLE 4
COMPARISON OF NEURAL NETWORK MODELS

Model

Data set

MMRE PRE (25)

Training Testing Training Testing

MLP 0.1401 0.3057 91.720 42.857

RBF 0.1227 0.2940 88.172 47.619

SVM 0.1625 0.2015 94.127 85.562

ELM 0.1925 0.2412 68.817 57.142

PSOSVM 0.0368 0.1543 63.440 93.650

On comparing Multi Layer Preceptron, Radial Basis Function,
Extreme Learning Machine, Support Vector Machine, and
PSO in SVM, very good results are obtained at PSO in SVM

Data set MMRE MMRE1 PRE PRE1

2 hidden
neuron

0.099 0.3519 91.39 52.381

4 hidden
neuron

0.024 0.3229 97.84 44.43

6 hidden
neuron

0.016 0.7909 98.92 44.54

8 hidden
neuron

0.0164 0.2935 98.93 47.14

10 hidden
neuron

0.0168 2.053 98.99 38.09

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4 79
ISSN 2347-4289

Copyright © 2014 IJTEEE.

.PSO in svm has very low MMRE error value and is a very
good optimization technique.

6 CONCLUSION
The results of this benchmarking study partially confirm the
results of previous studies . Simple, understandable tech-
niques like OLS with log transformation of attributes and
target, perform as good as (or better than) non-linear tech-
niques. Additionally, a formal model such as Cocomo per-
formed at least equally good as OLS with log transformation
on the Coc81 and Cocnasa data sets. These two data sets
were collected with the Cocomo model in mind. However,
this model requires a specific set of attributes and cannot
be applied on data sets that do not comply with this re-
quirement. Although the performance differences can be
small in absolute terms, a minor difference in estimation
performance can cause more frequent and larger project
cost overruns during software development. Hence, even
small differences can be important from a cost and opera-
tional perspective .Another conclusion is that the selection
of a proper estimation technique can have a significant im-
pact on the performance. A simple technique like regression
is found to be well suited for software effort estimation
which is particularly interesting as it is a well documented
technique with a number of interesting qualities like statis-
tical significance testing of parameters and stepwise analy-
sis. This conclusion is valid with respect to the different me-
trics that are used to evaluate the techniques. Furthermore,
it is shown that typically a significant performance increase
can be expected by constructing software effort estimation
models with a limited set of highly predictive attributes.
Hence, it is advised to focus on data quality rather than col-
lecting as much predictive attributes as possible. Attributes
related to the size of a software project, to the development,
and environment characteristics, are considered to be the
most important types of attributes.

7 FUTURE RESEARCH
This study indicates that different data preprocessing steps,
addressing possible data quality issues such as discretiza-
tion algorithms, missing value handling schemas, and scal-
ing of attributes, can play an important role in software effort
estimation. While the same data preprocessing steps were
applied on all data sets, the results of the input selection
indicate that preprocessing steps such as attribute selection
can be important. A thorough assessment of all possible
data preprocessing steps seems however computationally
infeasible when considering a large number of techniques
and data sets. The impact of various preprocessing tech-
niques has already been investigated to a limited extent,
but further research into this aspect could provide important
insights. This work can be extended using Genetic Algo-
rithm, optimization can be applied to get the result for all
methods. Also, considering the typical limited number of
observations and the importance of expert knowledge (i.e.
contextual information) for software effort estimation, we
believe the inclusion of such expert knowledge to be a
promising topic for future research. Now, this topic has been
investigated only to a limited extent in software effort esti-
mation. Future research could be done into these aspects
by especially considering the impact such estimations can
have on the budgeting and remuneration of staff.

REFERENCES
[1] Jones, T.C. Estimating Software Costs, McGraw-Hill, 1998.

[2] Thayer, H.R., Software Engineering Project Management,

Second Edition IEEE CS Press, 2001.

[3] C. Symons, “Come Back Function Point Analysis (Modernized)
– All is Forgiven!”, Proc. of the 4th European Conference on
Software Measurement and ICT Control, FESMA-DASMA
2001, pp. 413-426, 2001.

[4] C. M. Bishop, Neural networks for pattern recognition. Oxford J.
M. Zurada, Introduction to artificial neural systems. Boston:
PWS Publishing Company, 1995.

[5] B. D. Ripley, Pattern Recognition and Neural Networks. Cam-
bridge University Press, 1996.

[6] G. Finnie, G. Wittig, and J.-M. Desharnais, “A comparison of soft-
ware effort estimation techniques: Using function points with
neural networks, case-based reasoning and regression models,”
Journal of Systems and Software, vol. 39, pp. 281–289, 1997.

[7] C. Burgess and M. Lefley, “Can genetic programming improve
software effort estimation? a comparative evaluation,” Informa-
tion and Software Technology, vol. 43, pp. 863–873, 2001.

[8] M. Lefley and M. Shepperd, “Using genetic programming to
improve software effort estimation based on general data sets,”
in Lecture Notes in Computer Science, vol. 2724, 2003, pp.
2477–2487.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[10] M. T. Hagan and M. B. Menhaj, “Training feedforward networks
with the Marquardt algorithm,” IEEE Transactions on Neural
Networks, vol. 5, no. 6, pp. 989–993, 1994.

[11] J. Moody and C. Darken, “Fast learning in networks of locally-
tuned processing units,” Neural Computing, vol. 1, pp. 281–294,
1989.

[12] D. Specht, “A general regression neural network,” IEEE Trans-
actions on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991.

[13] A. Idri, A. Zahi, E. Mendes, and A. Zakrani, “Software Cost Esti-
mation Models Using Radial Basis Function Neural Networks,”
in Lecture Notes in Computer Science, vol. 4895, 2008,
pp. 21–31.

[14] A. Heiat, “Comparison of artificial neural networks and regres-
sion models for estimating software development effort,” Infor-
mation and Software Technology, vol. 44, no. 15, pp. 911–
922, 2002.

[15] V. N. Vapnik, Statistical Learning Theory. New York, USA: John
Wiley, 1998.

[16] P. Rao, Nonparametric Functional Estimation. Orlando, USA:
Academic Press, 1983.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 2, ISSUE 4 80
ISSN 2347-4289

Copyright © 2014 IJTEEE.

[17] V. Kumar, V. Ravi, M. Carr, and R. Kiran, “Software development
cost estimation using wavelet neural networks,” The Journal of
Systems and Software, vol. 81, pp. 1853–1867, 2008.

[18] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks”, in:
Proceedings of International Joint Conference on Neural Net-
works (IJCNN2004), 25–29 July, 2004, Budapest, Hungary.

[19] G.-B. Huang, Q.-Y. Zhu, K.Z. Mao, C.-K. Siew, P. Saratchandran,
N.

[20] Sundararajan, “Can threshold networks be trained directly?”,
IEEE Trans. Circuits Syst. II 53 (3) (2006) 187–191.

[21] I. Myrtveit and E. Stensrud, “A controlled experiment to assess
the benefits of estimation with analogy and regression models,”
IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.
510–525,

[22] B. Littlewood, P. Popov, and L. Strigini, “Modeling software de-
sign diversity a review,” ACM Computing Surveys, vol. 33, no. 2,
pp. 177–208, 2001.

[23] R. M. Dawes, D. Faust, and P. E. Meehl, “Clinical versus actuar-
ial judgement,” Science, vol. 243, no. 4899, pp. 1668–1674,
1989.

[24] M. Jørgensen, “Forecasting of software development work ef-
fort: Evi- dence on expert judgement and formal models,” Inter-
national Journal of Forecasting, vol. 23, pp. 449–462, 2007.

[25] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula, “Examin-
ing the feasibility of a case-based reasoning model for software
effort estimation,” MIS Quarterly, vol. 16, no. 2, pp. 155–171,
1992.

